算术与代数--“数学之家 ”--邓中数学科组博客

来源:百度文库 编辑:神马文学网 时间:2024/04/30 15:47:57
算术与代数

   人类有数的概念,与人类开始用火一样古老,大约在三十万年前就有了。但是有文字记载的数学到公元前3400年左右才出现。至于数字的四则运算则更晚,在我国,《九章算术》是古代数学最重要的著作,是从先秦到西汉中叶的众多学者不断修改、补充而成的一部数学著作,成书年代至迟在公元前一世纪。这是一本问题集形式的书,全书共246个题,分成九章,包含十分丰富的内容。在这本书中有分数的四则运算法则、比例算法、盈不足术、解三元线性代数方程组、正负数、开方以及一些计算几何图形的面积与体积等。在西方,也或迟或早地出现了这些内容,而这些内容包括我们从小学一直到中学所学习“算术”课程的全部内容。也就是说人类经过了几千年才逐步弄明白建立起来的“算术”的内容,现在每个人在童年时代花几年才逐步弄明白建立起来的“算术”的内容,现在每个人在童年时代花几年就全部学会了。对于“算术”来讲,“真正的进展”是由于“更有力的工具和更简单的方法的发现”,这个工具与方法是“数字符号化”,从而产生了另一门数学“代数”,即现在中学中的“代数”课程的内容。

  在我国,这已是宋元时代(约十三世纪五六十年代),当时的著作中,有“天元术”和“四元术”,也就是让未知数记作为“天元”、“x”,后来将二个、三个及四个未知数记作为“天”、“地”、“人”、“物”等四元,也就是相当于现在用x,y,z,w来表达四个未知数,有了这些“元”,也就可以解一些代数方程与联立线性代数方程组了。在西方彻底完成数字符号化是在十六世纪。现在中学生学习的“代数”的内容:包括一元二次方程的解,多元(一般为二元,三元至多四元)联立方程的解等。当然在“数字符号化”之前,一元二次方程的解,多元联立方程的解也是已经出现,例如我国古代已经有一些解一般数字系数的代数方程的“算法程序”,但这些都是用文字来表达的,直到“数字符号化”之后,才出现了现在中学代数的内容的形式。

  由“数字符号化”而产生的中学“代数”的内容,的的确确是“数学中真正的进展”。“代数”的确是“更有力的工具和更简单的方法”,“算术”顾名思义,可以理解为“计算的方法”,而“代数”可以理解为“以符号替代数字”,即“数字符号化”。人类从“算术”走向“代数”经历了千年。但在中学的课程中,却只花短短的几年,就可以全部学会这些内容。

  回忆我在童年时代,在小学学习“算术”课程时,感到很难,例如:求解“鸡兔同笼”题,即:一个笼子中关着若干只鸡,若干只兔,已知共有多少个头,多少只脚,求有多少只鸡,多少只兔?当时老师讲的求解的方法,现在已完全记不得了,留下的印象是感到很难,而且纳闷的是:鸡与兔为何要关在一个笼子里?既数得清有多少个头及多少只脚?为何数不清有多少只鸡与多少只兔?等到初中时,学习了“代数”课程,才恍然大悟,这不过是二元一次联立代数方程组,解方程组十分简单方便,这不仅可以用来解“鸡兔同笼”,即使将鸭与狗关在一个房间中,来数头数与脚数,不妨叫做“鸭狗同室”问题,对这样的问题一样可以解。因之,“代数”显然比“算术”来得“高级”,这的确是“更有力的工具和更简单的方法”,而这些工具和方法同时会有助于理解已有的理论并把“陈旧的、复杂的东西抛到一边”,也就是从“代数”的角度来理解“算术”可以理解得更深刻,而可以把“算术”中一些复杂的,处理个别问题的方法抛到一边去。

  在这里,我要重复说一遍,尽管中学的“代数”比小学的“算术”来得“高级”,是“更有力的工具与更简单的方法”,但并不意味着小学的“算术”就可以不必学了,因为:

  (1)“算术”中的一些内容不能完全被“代数”所替代,如四则运算等;

  (2)即使能被替代的内容,适当的学习一些,有利于对“代数”内容的认识与理解;

  (3)从教育学的角度考虑,这里有循序渐进的问题,有学生不同年龄段的接受能力的问题等等。

  作为中学“代数”中的一个重要内容是解多元一次联立方程组,在中学“代数”的教材中,一般着重讲二元或三元一次联立方程组,所用的方法往往是消元法。但是如果变元为四个或更多时,就得另想办法来建立起多元一次联立方程组的理论。经过很多年的努力,矩阵的想法产生了,这不但给出了多元一次联立代数方程组的一般理论,而且由此建立起一门新的学科“线性代数”。这是又一次“数学中真正的进展”,由于“更有力的工具和更简单的方法”,即“矩阵”的发现,不仅对多元一次联立代数方程组的理解更为清楚、更为深刻,由于有了统一处理方法,可以把个别地处理方程组的方法“抛到一边”。

  当然,“线性代数”是大学的课程,但它的产生的确再次印证了Hilbert所说的那段话。在中学“代数”中的另一个重要内容是解一元二次方程,在古代,例如《九章算术》中已有解一般一元二次方程的算法,后来有很多的发展,直到al-khowarizmi(约783—850)相当于给出了一般形式的一元二次方程。

  1545年G.Cardano(1501-1576)公布了由N.Fontana(1499-1557)发现了解一元三次方程的解,而一元四次方程的解由L.Ferrari(1522—1565)所解决。于是当时大批的数学家致力于更高次方程的求根式解,即企图只对方程的系数作加、减、乘、除和求正整数次方根等运算来表达方程的解。经过了二个世纪的努力,大批数学家都失败了,直到1770年J.·Lagrange(1736—1813)看到了五次及高次方程不可能做到这点,又过了半个世纪,1824年,N.·Abel(1802—1829)解决了这个问题,即对于一般的五次和五次以上的方程求根式解是不可能的。但什么样的特殊的代数方程能用根式来求解,这是E·Galois(1811—1832)所解决,而更为重要的是:为了解决这个问题,他建立起“群”的概念,这就意味着现代代数理论的产生,这是又一次“数学中真正的进展”。它是由于“更有力的工具和更简单的方法”,即“群”的发现而造成的,有了“群”以及后来发展起来的现代代数理论,可以更清楚、更深刻地理解以往高次代数方程求根式解的问题,而的确可以把以往那些“陈旧的、复杂的东西抛到一边”。