聚焦“可燃冰”---后石油时代的选择

来源:百度文库 编辑:神马文学网 时间:2024/04/29 16:08:34
青藏高原发现可燃冰 至少350亿吨油当量
发布时间 2009-11-03

新华网北京9月25日电(记者 王立彬)国土资源部25日宣布,中国在青海省祁连山南缘永久冻土带成功钻获天然气水合物实物样品,中国成为世界上第一次在中低纬度冻土区发现天然气水合物的国家。
国土资源部总工程师张洪涛25日在此间宣布,2008年11月,国土资源部在青海省祁连山南缘永久冻土带(青海省天峻县木里镇,海拔4062米)成功钻获天然气水合物实物样品;2009年6月继续钻探,获得宝贵的实物样品,并对样品进行了室内鉴定,获得一系列原始数据。这是中国继2007年5月在南海北部钻获天然气水合物之后的又一重大突破。
据介绍,2008年11月5日发现并成功钻取的天然气水合物实物样品,具有天然气水合物所具有的独特标志,岩心表面见白色棉絮状晶体,能直接点火燃烧,岩心不断冒出气泡和水珠,伴生晶型完好的自生碳酸盐和黄铁矿,天然气水合物分解后岩心呈蜂窝状构造。在此基础上,今年6月再次钻获天然气水合物样品,经现场红外热像仪检测证实为水合物的矿层,并经当今世界上最先进的激光拉曼光谱仪检测,显示出标准的天然气水合物特征光谱曲线,其特征与墨西哥湾实物样品和中国合成样品完全一致。
首次在中国陆域发现天然气水合物,使中国成为世界上第一次在中低纬度冻土区发现天然气水合物的国家,也是继加拿大1992年在北美麦肯齐三角洲、美国2007年在阿拉斯加北坡通过国家计划钻探发现天然气水合物之后,在陆域通过钻探获得天然气水合物样品的第三个国家。这一重大突破,证明了中国冻土区存在丰富的天然气水合物资源,对认识天然气水合物成藏规律、寻找新能源具有重大意义。
我国在青海省祁连山南缘永久冻土带成功钻获天然气水合物实物样品,并对样品进行了室内鉴定,获得一系列原始数据,这是我国继2007年5月在南海北部钻获天然气水合物之后的又一重大突破。国土资源部总工程师张洪涛表示,中国高度重视陆域永久冻土区天然气水合物的调查与研究工作。我国是世界上第三冻土大国,冻土区总面积达215万平方公里,具备良好的天然气水合物赋存条件和资源前景。据科学家初略估算,远景资源量至少有350亿吨油当量。
据介绍,天然气水合物又称“可燃冰”,是由水和天然气在高压、低温条件下混合而成的一种固态物质,外貌极像冰雪或固体酒精,遇火即可燃烧,具有使用方便、燃烧值高、清洁无污染等特点,是公认的地球上尚未开发的最大新型能源,被誉为21世纪最有希望的战略资源。目前研究结果表明,天然气水合物分布广泛,资源量巨大,是煤炭、石油、天然气全球资源总量的两倍,为世界各国争相研究、勘探的重要对象。
“首次在我国陆域发现天然气水合物,使我国成为世界上第一次在中低纬度冻土区发现天然气水合物的国家,也是继加拿大1992年在北美麦肯齐三角洲、美国2007年在阿拉斯加北坡通过国家计划钻探发现天然气水合物之后,在陆域通过钻探获得天然气水合物样品的第三个国家。”国土资源部总工程师张洪涛表示,这一重大突破,证明了我国冻土区存在丰富的天然气水合物资源,对认识天然气水合物成藏规律、寻找新能源具有重大意义,同时也再次证明了我国天然气水合物的调查与研究处于国际领先水平。
天然气水合物是“后石油时代”的重要替代能源。张洪涛说:“我国在冻土区发现这一潜在资源,必将极大地开拓人类寻找新资源的视野,为经济社会可持续发展提供新型能源。”
深海十年追寻 ,项目工程师揭密南海可燃冰 .
随着提取的成功,中国已经开始绘制可燃冰商业开发的路线图。按照战略规划的安排,2006~2020年是调查阶段,2020~2030年是开发试生产阶段,2030~2050年,中国可燃冰将进入商业生产阶段。已经是凌晨近3点了,张光学等中外科学家并不平静地守在钻位旁,等待着一位神秘的深海来客。
钻头不断下探,直至约1250米的海底,沉睡中的客人被轻轻揽起,带出水面。蓝色火苗突地燃起,张光学欢呼起来,这正是他们追寻了近10年的可燃冰(国际通称天然气水合物)。这一次已经是可燃冰一个月内第三次在中国南海神狐海域亮相。此前的5月1日,可燃冰样品在我国首次提取成功。在高压、低温条件下,天然气与水分子合成为一种固态物质,类似冰雪结晶物,这就是天然气水合物,俗称可燃冰。一般认为,世界上可燃冰中碳总量可能是地球上其它化石燃料中碳总量的两倍,而可燃冰中甲烷的总量可能是现在大气中甲烷总量的3000倍。1810年,可燃冰首次在实验室被发现。前苏联1934年首次发现该实物,并于1970年进行小规模商业开采。
我国直到1985年才有刊物介绍可燃冰。1998年,由现任广州海洋地质调查局副总工程师张光学起草的有关建议得到批准。次年,我国正式开始对可燃冰进行调查。2002年,国家批准在我国海域开展天然气水合物资源调查与评价。
今年以来,广州海洋地质调查局正式在我国南海珠江口的神狐海域实施天然气水合物钻探。4月21日,我国6位科学家在深圳赤湾码头登上荷兰某公司的Bavenit号钻探船,正式开始了南海北部可燃冰钻探航次第一航段的历程。5月1日凌晨,斑点状的可燃冰在第一个钻位取芯。张光学所在的第二航段随后在5月27日第三次取芯成功。
截止目前,世界海域内已有118处直接或间接发现了可燃冰,其中15个地区获得实物样品。我国是世界上,继美国、日本和印度之后,第四个通过国家研发计划采集到该样品的国家。
与世界其他国家相比,我国此次发现的可燃冰纯度均在99.7%以上,饱和度也较高,达到25%~48%;矿层较厚,有20多米;且呈层状分布,与其他国家分散浸染状分布相比,更易大规模开采。
张光学所在第二航段此次取得的样品,是一个长约40cm,底面直径约为5cm的圆柱体。在130个大气压下,该样品呈固态,释压到100个大气压时,收集到甲烷18升。进一步释压后的可燃冰样品放在手上,有 “劈啪”的震击感, “像爆米花似的”。放在耳边,不断发出 “丝丝”的声音。 “这说明它还在不断地放气,如果收集完全,应该有约28升甲烷气体。”张光学介绍说。
在高压状态下高度浓缩的可燃冰,在正常大气压下迅速由固体膨胀为气体,膨胀后体积约为之前的22.8倍。如此,这个仅一掌在握的可燃冰释放出的天然气,可满足一个三口之家用气近一个月,可燃冰钻探第一航段首席科学家张海启博士介绍。
据测算,一立方米可燃冰释放后能产生164立方米的天然气。可燃冰被认为是本世纪理想的洁净替代能源。美国政府顾问迈克尔 D.马克斯甚至预言,可燃冰将可能改变现在的地缘政治模式,美国、日本、印度等国可能实现能源自给,现存的世界能源格局将可能被打破。美国计划,2015年就能对可燃冰进行商业开发。
目前,美、日等国和一些国际机构掌握了技术领先优势,但这些技术往往被限以绝密而拒绝共享。此次勘探,由中国和荷兰某公司合作进行。 “一些核心技术对我们是保密的,比如保温保压、绳索打捞技术,这些必须靠我们自己来研究开发。”张光学说。
据初步预测,我国南海北部陆坡可燃冰远景资源量可达上百亿吨油当量,这与目前全世界一年的能源消费总量相当。《中国石油替代能源发展概述》预测,仅在南海北部的可燃冰储量即相当于中国陆上石油总量的50%左右。
能源研究所专家:可燃冰后石油时代的选择
世界性命题
随着可供人类开采的石油、煤炭等化石能源不断减少,许多国家都在寻找新的替代能源,可燃冰的发现立即引起人们的关注。一些国家相继把可燃冰作为后续能源进行开发研究,对可燃冰的科学考察取得可喜成绩。美国、日本等国家先后在海底获得了可燃冰实物样品,而加拿大在冻土带内找到了可燃冰。一些发达国家甚至将利用该能源的时间表定在2015年。
“在可燃冰的开发利用方面,一些发达国家可能走得要快一些,但可燃冰资源的发现将预示着一个时代的到来,这个时代是由世界能源界发展方向决定的,而并不能说由哪个国家来决定。”戴彦德说,可燃冰的开发利用是一个世界性的命题,中国如今也更大程度地参与到这个命题当中,我们应该尽自己的努力,力争在可燃冰时代到来的时候拥有更多话语权。
戴彦德告诉记者,随着全球气候变暖以及常规的化石能源日益走向枯竭,全人类开始积极寻求后石油时代的能源替代问题。从目前看主要有两个方向,一是以风能、太阳能、潮汐能、生物质能为代表的可再生能源,另外一个方向就是作为低碳能源的可燃冰。对石油替代资源必须尽早着手进行开发,至少要提前15年,甚至是二、三十年就开始投入,因此世界各国都很重视对可燃冰的开发利用。“毕竟从其储量之大、分布范围之广和应用前景之好来看,可燃冰是传统化石能源之后最佳的接替性能源。”戴彦德如是说。
后石油时代的选择
虽然可燃冰的开发利用引起了世界各国的高度关注,但要对这种资源进行大量开采,并将其作为一种新型能源加以利用,在中短期内并不容易。“可燃冰是后石油时代的一种能源,从长远发展看,人类对它寄予了很高期望,但却并不是近中期的能源选择。”戴彦德说,目前世界各国对可燃冰仅限于一种“发现式”的认识,还有很多初级问题没有搞清楚,“目前谈开发还为时过早”。
“目前很多国家都只是证明其在某一地区内含有可燃冰这种资源,但却很难说出具体的可采储量。”戴彦德表示,由于可燃冰分布于海底,因此勘探起来有很大难度,至少现阶段世界各国都不能像探测石油、天然气一样,通过分析地质构造和进一步勘探,确认可燃冰的探明可采储量。“储量尚不明了,何谈开采、利用?”
戴彦德的观点得到了业界的认同。有关研究成果表明,可燃冰形成的必要条件是低温和高压,因而它主要存在于冻土层和海底大陆坡中。这些赋存所需要的特殊温度和压力条件,使人们采集可燃冰的实物样品十分困难,不仅需要高投资,还需要游泳航海、地质钻探、样品取存等方面的高技术和先进设备。
“采集实物样本尚且具有一定的难度,可燃冰的开发利用就更是难上加难了。”专业人士指出,开发可燃冰非常危险,由于水化物是在低温高压下形成的,它的主要成分是甲烷80%、二氧化碳20%,一旦脱离地下和海底,气化造成的“温室效应”十分严重。且开采时还有可能导致海床崩塌使甲烷大量释放,释放过程中一旦失控,难免酿成灾难。因此业界认为可燃冰成为新能源只是人类的一个希望,在今后几十年内可望而不可即。 (来源:经济参考报)
聚焦可燃冰:定义、成因、储量、分布、优缺点
什么是可燃冰?
谈到能源,人们立即想到的是能燃烧的煤、石油或天然气,而很少想到晶莹剔透的“冰”。然而,自 20 世纪 60 年代以来,人们陆续在冻土带和海洋深处发现了一种可以燃烧的“冰”。这种“可燃冰”在地质上称之为天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),又称“笼形包合物”(Clathrate),分子结构式为:CH4·nH2O,现已证实分子结构式为CH4·8H20。
天然气水合物是一种白色固体物质,外形像冰,有极强的燃烧力,可作为上等能源。它主要由水分子和烃类气体分子(主要是甲烷)组成,所以也称它为甲烷水合物。天然气水合物是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下,由气体或挥发性液体与水相互作用过程中形成的白色固态结晶物质。 一旦温度升高或压强降低,甲烷气则会逸出,固体水合物便趋于崩解。(1立方米的可燃冰可在常温常压下释放164立方米的天然气及0.8立方米的淡水)所以固体状的天然气水合物往往分布于水深大于 300 米 以上的海底沉积物或寒冷的永久冻土中。海底天然气水合物依赖巨厚水层的压力来维持其固体状态,其分布可以从海底到海底之下 1000 米 的范围以内,再往深处则由于地温升高其固体状态遭到破坏而难以存在。
从物理性质来看,天然气水合物的密度接近并稍低于冰的密度,剪切系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。
可燃冰燃烧方程式
CH4·8 H2O + 2 O2 == CO2 + 10 H2O (反应条件为“点燃”)
可燃冰成因
可燃冰是天然气分子(烷类)被包进水分子中,在海底低温与压力下结晶形成的。形成可燃冰有三个基本条件:温度、压力和原材料。首先,可燃冰可在0℃以上生成,但超过20℃便会分解。而海底温度一般保持在2~4℃左右;其次,可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大气压很容易保证,并且气压越大,水合物就越不容易分解。最后,海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃冰晶体就会在介质的空隙间中生成。
可燃冰的资源量
世界上绝大部分的天然气水合物分布在海洋里,据估算,海洋里天然气水合物的资源量是陆地上的 100 倍以上。据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为 1.8 亿亿立方米 (18000 × 10^12m3 ) ,约合 1.1 万亿吨 (11 × 10^12t) ,如此数量巨大的能源是人类未来动力的希望,是 21 世纪具有良好前景的后续能源。
可燃冰被西方学者称为“21世纪能源”或“未来新能源”。迄今为止,在世界各地的海洋及大陆地层中,已探明的“可燃冰”储量已相当于全球传统化石能源(煤、石油、天然气、油页岩等)储量的两倍以上,其中海底可燃冰的储量够人类使用1000年。
可燃冰的缺点
天然气水合物在给人类带来新的能源前景的同时,对人类生存环境也提出了严峻的挑战。天然气水合物中的甲烷,其温室效应为 CO2 的 20 倍,温室效应造成的异常气候和海面上升正威胁着人类的生存。全球海底天然气水合物中的甲烷总量约为地球大气中甲烷总量的 3000 倍,若有不慎,让海底天然气水合物中的甲烷气逃逸到大气中去,将产生无法想象的后果。而且固结在海底沉积物中的水合物,一旦条件变化使甲烷气从水合物中释出,还会改变沉积物的物理性质,极大地降低海底沉积物的工程力学特性,使海底软化,出现大规模的海底滑坡,毁坏海底工程设施,如:海底输电或通讯电缆和海洋石油钻井平台等。
海底宝贝来之不易
可燃冰是天然气和水结合在一起的固体化合物,外形与冰相似。由于含有大量甲烷等可燃气体,因此极易燃烧。同等条件下,可燃冰燃烧产生的能量比煤、石油、天然气要多出数十倍,而且燃烧后不产生任何残渣和废气,避免了最让人们头疼的污染问题。科学家们如获至宝,把可燃冰称作“属于未来的能源”。
可燃冰这种宝贝可是来之不易,它的诞生至少要满足三个条件:第一是温度不能太高,如果温度高于20℃,它就会“烟消云散”,所以,海底的温度最适合可燃冰的形成;第二是压力要足够大,海底越深压力就越大,可燃冰也就越稳定;第三是要有甲烷气源,海底古生物尸体的沉积物,被细菌分解后会产生甲烷。所以,可燃冰在世界各大洋中均有分布。
可燃冰的储量
天然气水合物在世界范围内广泛存在,这一点已得到广大研究者的公认。在地球上大约有27%的陆地是可以形成天然气水合物的潜在地区,而在世界大洋水域中约有90%的面积也属这样的潜在区域。已发现的天然气水合物主要存在于北极地区的永久冻土区和世界范围内的海底、陆坡、陆基及海沟中。由于采用的标准不同,不同机构对全世界天然气水合物储量的估计值差别很大。据潜在气体联合会(PGC,1981)估计,永久冻土区天然气水合物资源量为1.4×1013~3.4×1016m3,包括海洋天然气水合物在内的资源总量为7.6×1018m3。但是,大多数人认为储存在汽水合物中的碳至少有1×1013t,约是当前已探明的所有化石燃料(包括煤、石油和天然气)中碳含量总和的2倍。由于天然气水合物的非渗透性,常常可以作为其下层游离天然气的封盖层。因而,加上汽水合物下层的游离气体量这种估计还可能会大些。如果能证明这些预计属实的话,天然气水合物将成为一种未来丰富的重要能源。
从化学结构来看,天然气水合物是这样构成的:由水分子搭成像笼子一样的多面体格架,以甲烷为主的气体分子被包含在笼子格架中。不同的温压条件,具有不同的多面体格架。
从物理性质来看,天然气水合物的密度接近并稍低于冰的密度,剪切系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。
仅仅是目前已探明的储量,就比地球上石油的总储量还大几百倍。这些可然冰都蕴藏在全球各地的450米深的海床上,表面看起来,很象干冰,实际却能燃烧。在美东南沿海水下2700平方米面积的水化物中,含有足够供应美国70多年的可燃冰。其储量预计是常规储量的2.6倍,如果全部开发利用,可使用100年左右。中国地质大学(武汉)和中南石油局第五物探大队在藏北高原羌塘盆地开展的大规模地球物理勘探成果表明:继塔里木盆地后,西藏地区很有可能成为中国21世纪第二个石油资源战略接替区。
可燃冰的开采设想
由于可燃冰在常温常压下不稳定,因此开采可燃冰的方法设想有:①热解法。②降压法。③二氧化碳置换法。
全球分布区多达116处
根据专家预测,全球蕴藏的常规石油天然气资源消耗巨大,预计在四五十年之后就会枯竭。能源危机让人们忧心忡忡,而可燃冰就像是上天赐予人类的珍宝,它年复一年地积累,形成延伸数千乃至数万里的矿床。仅仅是现在探明的可燃冰储量,就比全世界煤炭、石油和天然气加起来的储量还要多几倍。
科学家的评价结果表明,仅仅在海底区域,可燃冰的分布面积就达4000万平方公里,占地球海洋总面积的1/4。目前,世界上已发现的可燃冰分布区多达116处,其矿层之厚、规模之大,是常规天然气田无法相比的。科学家估计,海底可燃冰的储量至少够人类使用1000年。
开采不当会引发灾难
天然可燃冰呈固态,不会像石油开采那样自喷流出。如果把它从海底一块块搬出,在从海底到海面的运送过程中,甲烷就会挥发殆尽,同时还会给大气造成巨大危害。为了获取这种清洁能源,世界许多国家都在研究天然可燃冰的开采方法。科学家们认为,一旦开采技术获得突破性进展,那么可燃冰立刻会成为21世纪的主要能源。
相反,如果开采不当,后果绝对是灾难性的。在导致全球气候变暖方面,甲烷所起的作用比二氧化碳要大20倍;而可燃冰矿藏哪怕受到最小的破坏,都足以导致甲烷气体的大量泄漏,从而引起强烈的温室效应。另外,陆缘海边的可燃冰开采起来十分困难,一旦出了井喷事故,就会造成海啸、海底滑坡、海水毒化等灾害。所以,可燃冰的开发利用就像一柄“双刃剑”,需要小心对待。
世界各国竞相开发可燃冰
1960年,前苏联在西伯利亚发现了可燃冰,并于1969年投入开发;美国于1969年开始实施可燃冰调查,1998年把可燃冰作为国家发展的战略能源列入国家级长远计划;日本开始关注可燃冰是在1992年,目前已基本完成周边海域的可燃冰调查与评价。但最先挖出可燃冰的是德国.
2000年开始,可燃冰的研究与勘探进入高峰期,世界上至少有30多个国家和地区参与其中。其中以美国的计划最为完善——总统科学技术委员会建议研究开发可燃冰,参、众两院有许多人提出议案,支持可燃冰开发研究。美国目前每年用于可燃冰研究的财政拨款达上千万美元。
为开发这种新能源,国际上成立了由19个国家参与的地层深处海洋地质取样研究联合机构,有50个科技人员驾驶着一艘装备有先进实验设施的轮船从美国东海岸出发进行海底可燃冰勘探。这艘可燃冰勘探专用轮船的7层船舱都装备着先进的实验设备,是当今世界上唯一的一艘能从深海下岩石中取样的轮船,船上装备有能用于研究沉积层学、古人种学、岩石学、地球化学、地球物理学等的实验设备。这艘专用轮船由得克萨斯州A·M大学主管,英、德、法、日、澳、美科学基金会及欧洲联合科学基金会为其提供经济援助。
世界上可燃冰的分布
海底天然气水合物作为 21 世纪的重要后续能源,及其对人类生存环境及海底工程设施的灾害影响,正日益引起科学家们和世界各国政府的关注。本世纪六十年代开始的深海钻探计划 (DSDP) 和随后的大洋钻探计划 (ODP) 在世界各大洋与海域有计划地进行了大量的深海钻探和海洋地质地球物理勘查,在多处海底直接或间接地发现了天然气水合物。到目前为止,世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、日本南海海槽、苏拉威西海和新西兰北部海域等,东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。
因此,从20 世纪80 年代开始,美、英、德、加、日等发达国家纷纷投入巨资相继开展了本土和国际海底天然气水合物的调查研究和评价工作,同时美、日、加、印度等国已经制定了勘查和开发天然气水合物的国家计划。特别是日本和印度,在勘查和开发天然气水合物的能力方面已处于领先地位。
2009年9月中国地质部门公布,在青藏高原发现了一种名为可燃冰(又称天然气水合物)的环保新能源,预计十年左右能投入使用。这是中国首次在陆域上发现可燃冰,使中国成为加拿大、美国之后,在陆域上通过国家计划钻探发现可燃冰的第三个国家。初略的估算,远景资源量至少有350亿吨油当量。
可燃冰在中国的状况
作为世界上最大的发展中的海洋大国,我国能源短缺十分突出。目前我国的油气资源供需差距很大, 1993 年我国已从油气输出国转变为净进口国, 1999 年进口石油 4000 多万吨, 2000 年进口石油近 7000 万吨,预计 2010 石油缺口可达 2 亿吨。因此急需开发新能源以满足中国经济的高速发展。海底天然气水合物资源丰富,其上游的勘探开采技术可借鉴常规油气,下游的天然气运输、使用等技术都很成熟。因此,加强天然气水合物调查评价是贯彻实施党中央、国务院确定的可持续发展战略的重要措施,也是开发我国二十一世纪新能源、改善能源结构、增强综合国力及国际竞争力、保证经济安全的重要途径。
我国对海底天然气水合物的研究与勘查已取得一定进展,在南海西沙海槽等海区已相继发现存在天然气水合物的地球物理标志 BSR ,这表明中国海域也分布有天然气水合物资源,值得我们开展进一步的工作;同时青岛海洋地质研究所已建立有自主知识产权的天然气水合物实验室并成功点燃天然气水合物。
我国发现海底可燃冰
2005年4月14日,我国在北京举行中国地质博物馆收藏我国首次发现的天然气水合物碳酸盐岩标本仪式。
宣布我国首次发现世界上规模最大被作为“可燃冰”即天然气水合物存在重要证据的“冷泉”碳酸盐岩分布区,其面积约为430平方公里。
该分布区为中德双方联合在我国南海北部陆坡执行“太阳号”科学考察船合作开展的南中国海天然气水合物调查中首次发现。冷泉碳酸盐岩的形成被认为与海底天然气水合物系统和生活在冷泉喷口附近的化能生物群落的活动有关。此次科考期间,在南海北部陆坡东沙群岛以东海域发现了大量的自生碳酸盐岩,其水深范围分别为550米~650米和750米~800米,海底电视观察和电视抓斗取样发现海底有大量的管状、烟囱状、面包圈状、板状和块状的自生碳酸盐岩产出,它们或孤立地躺在海底上,或从沉积物里突兀地伸出来,来自喷口的双壳类生物壳体呈斑状散布其间,巨大碳酸盐岩建造体在海底屹立,其特征与哥斯达黎加边缘海和美国俄勒岗外海所发现的“化学礁”类似,而规模却更大。
“可燃冰”是由天然气与水分子结合形成的外观似冰的白色或浅灰色固态结晶物质,因其成分的80%~99.9%为甲烷,这些碳酸盐岩的形成和分布记录了富含甲烷流体的类型、性质、来源、强度变化及其与海底可能存在的水合物系统的关系等情况。
中德科学家一致建议,借距工作区最近的中国香港九龙的名谓,将该自生碳酸盐岩区中最典型的一个构造体命名为“九龙甲烷礁”,其中“龙”字代表了中国,“九”代表了多个研究团体的合作。
中国绘制可燃冰的商业开发路线
按照战略规划的安排,2006年—2020年是调查阶段,2020年—2030年是开发试生产阶段,2030年—2050年,中国可燃冰将进入商业生产阶段。
划时代意义:我国发现巨量可燃冰
青藏高原发现新能源可燃冰 至少350亿吨油当量
中国国土资源部总工程师张洪涛先生09年9月25日在北京介绍,中国地质部门在青藏高原发现了一种名为可燃冰(又称天然气水合物)的环保新能源,预计十年左右能投入使用。
在当天的新闻发布会上,张洪涛说,这是中国首次在陆域上发现可燃冰,使中国成为加拿大、美国之后,在陆域上通过国家计划钻探发现可燃冰的第三个国家。
他介绍,初略的估算,远景资源量至少有350亿吨油当量。
可燃冰是水和天然气在高压、低温条件下混合而成的一种固态物质,具有使用方便、燃烧值高、清洁无污染等特点,是公认的地球上尚未开发的最大新型能源。
日冒险开采可燃冰 可能造成海沟崩塌
如今,迫于发展需求、急于改变能源依赖他人局面的日本把目光投向了海底沉睡的“能源水晶”——天然气水合物,也称“可燃冰”。(它是水和天然气在中高压和低温条件下混合时产生的晶体物质,外貌极似冰雪,点火即可燃烧。)在日本附近平静的太平洋海面下3000英尺,数以亿吨的可燃冰正等待被人们利用。日本认为,如果这些资源能为日本所用,将大大改善它依赖从中东和印尼进口能源的困境。据初步估算,这些“可燃烧的冰块”可供日本全国14年之用。但开发这些未明资源的同时,有一个关键问题必须应对:环境保护。
日加合作开采“可燃冰”
在本州岛海岸线30英里外,科学家们发现了一条蕴藏量惊人的海沟:在海沟里的甲烷呈水晶状,大约有500米厚,总量达40万亿立方米。这个储量尽管还不能与沙特或者俄罗斯的石油资源相比,但也足够日本用上一阵了。日本科学家们对这一结果很是兴奋,他们表示将尽快拿出合适的方案开采这些被遗忘的资源。
相比日本,拥有广袤海洋资源的加拿大可谓在这方面先行一步。他们通常采用“降压”的方法开采此类冰冻资源,即先在冰层中打许多很深的孔,然后借助大量抽水机降低打孔带来的重压,从而让有用的甲烷气体从海水中分离出来,慢慢浮至人力便于提取的深度。日加两国科学家决定合作,采用这个最有效的办法开采本州岛附近海域发现的资源。
日本政府很快同意了这个开采方法,先期的演练工作已在今年4月完成,其余各项测试将在2008年初完成。
开采面临许多未知威胁
向日本招手的除了巨大能源,还有很多看不见的危险。比如,在“降压”方法的第三个步骤,降压让大量的甲烷气体慢慢浮上海面,这些温室气体的出现会对全球气温造成什么样的影响还不得而知。日本政府也对此表示,他们一直高度重视环境的保护问题,绝不会为了能源牺牲环境,他们已安排许多先期测试以防万一。
这还是开采成功后的顾虑,在开采过程中依然有许多未知威胁。科学家们提醒日本政府在开采中必须警惕海底的海沟崩塌。表面平静的海洋底下究竟在进行着哪些变化,人们还没有完全搞清楚。如果开采中一个不小心造成目标海沟坍塌或是类似于泥石流的灾难,不仅会给开采国带来巨大人力、财力损失,由此泄露的大量温室气体更会让世界担忧。
此外,大规模地在海底钻孔、安置各种设备无疑会让鱼类远离海岸,生活在海边的渔民们的收入自然会受到不小的影响。日本的渔民已经表达了这样的担忧。