系统论

来源:百度文库 编辑:神马文学网 时间:2024/04/28 11:44:29
相关文章(33)来源以文找文
一.系统论
系统论是研究系统结构与功能(包括演化、协同和控制)一般规律的科学。
加拿大籍奥地利理论生物学家贝塔朗菲是最早探索系统一般规律的科学家。在《一般系统论》一书中,他指出系统在不同领域中表现出结构上的相似性或同构性,并将系统普遍性质总结为系统整体性、关联性、动态性、有序性和预决性。
从50年代起,系统工程的大量实践,运筹学、控制论、信息论的迅速发展,都为系统学的建立提供了丰富材料。另一方面,其他科学技术特别是物理学、化学、理论生物学、数学等都有了新的发展和突破,如普里戈金的耗散结构理论,哈肯的协同学,艾根的超循环理论,托姆的突变论,斯梅尔和廖山涛的动力系统理论,都在不同程度上揭示了系统的深刻的性质和规律,使得人们对系统有了更加深入的认识。
例如,系统的过去和将来之间存在着对称破缺;系统具有自组织性,在涨落作用下,能自发形成稳定的有序结构,有序是系统自组织和子系统协同的结果;系统包含有复杂的反馈机制,反馈是有序之本;系统在一定条件之下,可以从有序变成混沌,也可以从混沌变成有序,还可以从一种有序变为另一种有序而导致状态突变;混沌是系统对初始条件和边界条件异常敏感产生的貌似无序的运动。
混沌现象表明,确定性系统可以产生随机行为。卡姆定理说明,在封闭系统中,三维以上非线性系统出现混沌是普遍的。
对开放系统,动力系统理论也证明了类似的事实。混沌是一种吸引子,不过不是平衡点、极限环这类具有整数维的正常吸引子,而是分数维的奇异吸引子,具有复杂的几何结构。系统普遍存在着李雅普诺夫稳定性和结构稳定性;非线性系统中分岔现象是普遍发生的,分岔是产生新状态和多样性之源等。
钱学森从系统观点对这些分布在不同学科中的科学成就进行概括和统一,揭示了系统普遍规律和深刻性质,奠定了系统学的理论基础。
系统学的研究对象是各类系统。根据组成系统的元素和元素种类的多少以及它们之间关联的复杂程度,把系统分为简单系统和巨系统两大类。
简单系统是指组成系统的元素比较少,它们之间关系又比较单纯,如某些非生命系统;巨系统是指组成系统元素的数目非常庞大的系统。
如果组成系统的元素非常多,但元素种类比较少且它们之间关系比较简单,这类系统称为简单巨系统,如激光系统。
如果组成系统的元素不仅数量大而且种类也很多,它们之间的关系又很复杂,并有多种层次结构,这类系统称为复杂巨系统,例如人体系统和生态系统。在人体系统和生态系统中,元素之间关系虽然复杂,但还是有确定规律的。
另一类复杂巨系统是社会系统,组成社会系统的元素是人。由于人的意识作用,系统元素之间关系不仅复杂而且带有很大的不确定性,这是迄今为止最复杂的系统。系统的上述分类,清晰地刻划了系统复杂性的层次,这对系统学的研究具有重要意义。
对于简单系统和简单巨系统,自然科学的理论和方法(包括运筹学、控制论、信息论、数学以及耗散结构理论、协同学、突变论等)是可以很好地描述和研究的,并取得了很大的成功。70年代末以来有人把上述理论方法应用到复杂巨系统,也取得了一定的成功,如超循环理论。但对整个复杂巨系统的研究,特别是对社会系统的研究,上述理论方法有很大的局限性。
例如对策论,就其理论框架而言,是研究社会系统的理想工具。但对策论已取得的成就,还不能处理社会系统的复杂性,问题在于对策论把人的社会性、复杂性、心理和行为的不确定性大大简化了,以至把复杂巨系统问题变成了简单巨系统或简单系统的问题了。
系统学的任务从根本上来说是两个方面,一个是对系统规律的认识,另一个是在认识系统规律的基础上如何控制系统。第一个方面是关于系统结构、子系统协同,以及系统功能在系统环境作用下的演化规律。第二个方面则是把控制的思想和理论引入到系统学。如同认识客观世界是为了更好的改造客观世界一样,人们认识系统也是为了更好的控制系统。
二. 系统工程学
系统工程学是研究分析有关复杂信息反馈系统的动态趋势的学科。系统工程学以控制论、控制工程、系统工程、信息处理和计算机仿真技术为基础 ,研究复杂系统随时间推移而产生的行为模式。
系统工程学把系统的行为模式看成是由系统内部的信息反馈机制决定的。通过建立 系统工程学模型,可以研究系统的结构、功能和行为之间的动态关系,以便寻求较优的系统结构和功能。
第二次世界大战以后,随着工业化的进展,城市人口、就业、环境污染和资源等各种社会问题日趋严重,迫切需要用新的方法对这些问题进行综合研究。
系统工程学研究的对象是复杂的系统。除了一般大系统所具有的结构复杂、因素众多、系统行为有时滞现象 ,以及系统内部诸参数随时间而变化等特征外。系统工程学认为的复杂系统还有一些其他特征,比如系统都是高阶数、多回路、非线性的信息反馈系统;系统的行为具有“反直观”性,即其行为方式往往与多数人们所预期的结果相反;系统内部诸反馈回路中存在一些主要回路;系统的非线性多次反馈以后,呈现出对外部扰动反映迟钝的倾向,对系统参数变化不敏感 等。
从系统方法论来说, 系统工程学是结构方法、功能方法和历史方法的统一。它有一套独特的解决复杂系统问题的工具和技巧,如双向因果环、反馈、流位和速率等概念。
系统工程学模型中能容纳大量的变量,一般可达数千个以上;它是一种结构模型,通过它可以充分认识系统结构,并以此来把握系统的行为,而不只是依赖数据来研究系统行为;它是实际系统的实验室。
系统工程学通过人和计算机的配合,既能充分发挥人的理解、分析、推理、评价、创造等能力的优势,又能利用计算机高速计算和跟踪能力。以此来实验和剖析系统,从而获得丰富的信息,为选择最优的或次优的系统方案提供有力工具。
系统动力学模型主要是通过仿真实验进行分析计算,主要计算结果都是未来一定时期内各种变量随时间而变化的曲线。也就是说,模型能处理高阶次、非线性、多重反馈的复杂时变系统(如社会经济系统)的有关问题。
建立系统工程学模型首先是确定系统分析目的;其次是确定系统边界,即系统分析涉及的对象和范围;之后是建立因果关系图和流图;然后写出 系统工程学方程;最后进行仿真试验和计算。