美国海军陆战队F/A-18战斗机

来源:百度文库 编辑:神马文学网 时间:2024/04/27 17:46:37

1974年正当美国空军提出“轻型战斗机”计划,并开始研制原型机的时候,美国海军也提出了研制多用途战斗机的要求.当时称之为VFAX计划,后来改称海军空战战斗机计划。1974年诺斯罗普公司的YF-17在与YF-16的竞争中失败,幸运的是诺斯罗普的工作没有白做,1975年他们的YF-17被海军选中,这就是F/A-18的原型机。
1976年1月美国海军又与麦道公司签定合同并以麦道公司(现已并入波音公司,称波麦公司)为主与诺斯罗普公司一起联合研制F/A-18“大黄蜂”。后经过进一步的原型机试飞,生产型制造、试飞,到1983年1月初步形成作战能力。美国海军和海军陆战队共订购1366架,此外,加拿大订购138架,澳大利亚订购75架,西班牙订购84架,均已部分交付使用。该机的重大改进型号F/A-18E/F已批量交付美军,并可能出口澳大利亚。
F-18A大黄蜂是单座、双发舰载战斗攻击机。有YF/A-18A/B、F/A-18A、RF-18A、F/A-18B、F/A-18C和F/A-18D等6种型别,共生产了1137架,其中150架是双座教练型,112架是侦察型。
F-18A是第1种生产型,主要用于舰队防空和舰载攻击机的护舰,也用于执行空对面攻击任务。主要的火力控制设备包括AN/AVQ-28平视显示器、AN/AYK-14中央任务计算机(2台)、AN/APG-65脉冲多普勒雷达、多功能显示器、外挂物管理装置、AN/AWG-21反辐射导弹(AGM-78)控制器等。执行空对地攻击的机型座舱中的显示器有些变化,并装备有前视红外(FLIR)和激光光点跟踪器(LST)。
F/A-18E/F是最新改型,其主要特点是增大了航程、每侧机翼处增加1个外挂架,而且机翼内侧挂架的最大挂载能力提高到2400kg,增加了载弹量和提高了作战能力。其电子系统中约有90%与F/A-18C/D通用,雷达选用了AN/APG-73(AN/APG-65的改型)。

F-18A战斗机的武器控制系统包括攻击显示分系统、数据处理分系统、参数测量(传感器)分系统和外挂物管理/控制分系统等4个主要部分。
攻击显示分系统包括AN/AVQ-28平视显示器和3个完全一样的阴极射线管下视显示器-多功能显示器(MFD)、主监控显示器(Master Monitor Display-MMD)和水平情况显示器(Horizontal Situation Display-HSD)。主监控显示器显示所有飞机系统的告警信息和资询信息。它也是多功能显示器的备用设备,能显示前视红外信息。水平情况显示器是主要的导航显示器。数据处理分系统包括大小30余个计算机,如AN/AYK-14中央任务计算机(2台并行工作)、雷达信号处理机、雷达数据处理机、外挂物管理计算机、显示计算机、飞行控制计算机和大气数据计算机等,全部程序大约有779K。表3.1列出了主要几种可编程和ROM计算机的CPU和存储容量。
参数测分系统包括AN/APG-65雷达、AN/ASN-130惯导装置、AN/AAS-38前视红外装置、AN/ASQ-173激光照射/测距器和大气数据传感器等。
外挂物管理和控制分系统包括AN/AYQ-9外挂物管理系统和AN/AWG-21导弹控制器等。
F/A-18采用单座双发后掠翼和双立尾的总体布局.机翼为悬臂式的中单翼,后掠角不大,前缘装有全翼展机动襟翼,后缘有襟翼和副冀,前后缘襟翼的偏转均由计 算机控制.停降在舰上时,外翼段可以折叠(副翼位于外冀后缘).翼根前缘是一对大边条,一直前伸 到座舱两侧,据说因此可使飞机能在60度的迎角下飞行.机身采用半硬壳结构,后机身下部装有着舰用的拦阻钩。尾翼也采用悬臂式结构,平后和垂尾均有后掠角,平尾低于机翼,使飞机大迎角飞行时具有良好的纵向稳定性;略向外倾的 双立尾位于全动平尾和机冀之间的机身两侧.起落架为前三点式,前起落架上有供弹射起飞用的牵引把.座舱采用气密、空调,内装马丁?贝克公司的弹射座椅,风挡和座舱盖分别向前、后开启.F/A-18装两台通用电气公司研制的F404-OE-400低涵比涡轮风扇发动机,单台加力推力71.2千牛.进气道位于翼根下的机身两侧.机内可带4990千克燃油,机头右侧上方还装有可收藏的空中加油管。
F/A-18是主要特点是可靠性和维护性好,生存能力强,大迎角飞行性能好以及武器投射精度高。据介绍,该机的机体是按6000飞行小时的使用寿命设计的,机载电于设备的平均故障间隔为30飞行小时,雷达的平均故障间隔时间为100小时,电子设备和消耗器材中有98%有自检能力.到目前为止,F/A-18共有9个型别,有单座的,也有双座的。出口加拿大的编号为CF-18A,澳大利亚的有F/A-18A/B,西班牙的编号为EF-18,还有一种供出口用的多用途岸基型为F/A-18L型.F/A-18A为基本型,是一种单座战斗/攻击机,主要用于护航和 舰队防空;如果换装部分武器后即为攻击机,可执行对地攻击任务。
主要武器有1门M61A2型20毫米机炮,备弹570发.共有9个外挂架,两个翼尖挂架各可接1枚.AIM-9L“响尾蛇”空对空导弹;两个外翼挂架可带空对地或空对空武器,包括AIM-7“麻雀”和AIM一9“响尾蛇”导弹;两个内翼挂架可带副油箱或空对地武器;位于发动机短舱下的两个接架可带“麻雀”导弹或马丁·马丽埃塔公司的AN/ASQ一173激光跟踪器、攻击效果照相机和红外探测系统吊舱等;位于机身中心线的挂架可技副油箱或武器。
F/A-18C和D型是1986财政年度起购买的单座和双座型。F/A-1BC和D型还可带先进中距空对空导弹和“幼畜”(又称小牛)空对地导弹。采用机载自卫干扰机、侦察设备、新的“空中通用救生系统”弹射座椅、新型机载计算机、飞行故障记录仪和监视系统等。C型于1986年作首次试飞,1987年9月开始交付。从1989年10月以后交付的C/D型,可携带供全天候夜间攻击飞行任务使用的设备,包括前视红外探测系统导航吊舱,新的平视显示器和飞行员夜视镜。
RF-18是F/A-18的简化侦察型,1984年首飞。早期型号是由F/A-18A改装成,后由F/A-18D改装成,装有先进机载战术侦察系统(ATARS),可携带装有侧视雷达和红外传感器的侦察吊舱。侦察到的信息可通过数据链实时传输。美国海军计划使83架F/A-18D具有这种侦察能力,以接替将要退役的RF-4B。
AF-18A则是皇家澳大利亚空军的型号。1981年10月20日澳大利亚宣布了采购75架F/A-18的决定,其中57架单座型,18架双座型。部分于澳大利亚生产。1990年5月16日,75架飞机全部交付完毕。所能携带的武器主要包括AIM-9L、AGM-88、AGM-84等空空/空地导弹。从1990年起,这些飞机还将装备F/A-18C/D型的机载电子设备并可携带AN/AAS-38红外跟踪和激光指示吊舱。EF-18A/B是F/A-18A/B的西班牙空军型。1985年12月4日,第一架EF-18首飞,1986年7月10日开始交付,1987年初12架双座型交付完毕,1990年72架飞机全部交付完毕。
F/A-18L是为出口而考虑发展的多用途岸基型。该型与舰载型90%的部件通用,空机重量减轻1000多千克。飞机作战性能得到提高,起飞滑跑距离缩短到351米,爬升率提高到305米/秒,最大速度达M2,携带最大油量时空中转场航程大于4630公里,在11个挂架上最多可携带9072千克外挂物。未批生产。
F-18E/F“超黄蜂”舰载战斗机是美国海军最新型的战斗攻击机,由F-18C/D发展而来,由包括波音、诺斯普罗-格鲁曼、通用电气和雷神公司在内的“大黄蜂”项目组研制生产的。E型为单座,F型双座。
主要改进有:
采用了隐身外形设计,包括原来的圆形进气道改为方形进气道,涂漆含有吸收雷达辐射的材料等;
改换更大推力的发动机;
前机身延长0.86米,翼展加宽1.31米,机翼翼面增大9.29平方米,因此翼载减小;水平尾翼也有所增大,后掠角减小;机翼前缘边条面积增大了34%;机翼及机身的改进令空气动力性能有极大改善;
最大起飞重量提高27%,达到30000公斤;因此载重量也有提高,内部燃油增加33%,达到6560千克;如果加上三个副油箱,载油量达到11000千克;
F-18E/F电子设备有90%与C/D型通用,但增加了改进型火控雷达和机载电子设备,而且可带多种更先进的攻击武器;雷达为改进的ANPG73雷达,提高了探测、辨别能力,并可在对地攻击时提供高分辨率地形图;今后将改装更先进的有源相控阵雷达以及“联合头盔指示系统”、“多功能信息分配系统”;座舱增加了-个触摸显示器和-个新的油料显示器,并使用了超高速集成电路计算机;将来将把座舱三个显示器全部改为彩色液晶显示器;加装了夜间低空导航和红外瞄准系统。
2004年5月,美海军表示计划为F/A-18E/F开发一种新的先进任务计算机(AMC)。这种计算机作为集成的信息处理系统,可提供全面的硬件和软件解决方案,是组成“网络中心战”能力的新一代技术中的一部分。原本超级大黄蜂已经采用II型AMC计算机,其技术水平按照现有技术来看已处于落后水平。为此F/A-18项目办公室组建了一个工作小组来研究开发更先进的III型AMC。要求该小组在不到三年的时间内,完成从方案探索到产品交付的过程。波音公司、通用动力公司、霍尼韦尔公司以及在中国湖的“F/A-18先进武器实验室”等参与了该系统的设计,设计过程用了不到4个月的时间。设计中考虑了降低未来完备性成本的问题。III型AMC的处理速度将更快,总处理能力将更大,具有在座舱内截获并观看数字和模拟录像的能力;可为EA-18G电子战飞机和“21世纪海上力量”能力的开发提供基础。III型AMC采用了商业货架(COTS)技术,非开发的元件产品及已证明的技能。该AMC将采用的第四代“更高级语言(HOL)软件架构配置(SCS)”目前正在开发,将具有按模块化设计软件的能力,并显著降低系统测试和维护所需时间。III型AMC定于从2007年开始在已进入服役的飞机上安装。
ANPG73雷达的空对地作战模式给人以深刻印象。该雷达采用了合成孔径技术,可产生三种不同平面的扩展显示。每个平面的扩展,都可将较小的面积域扩展为较大的显示形式,就好像加了个放大镜一样。而多功能彩色显示器上采用了活动地图模式。在搜索跟踪地面目标的过程中,飞行员只需观察彩色多功能显示器上动态刷新的敌目标标志即可,而不需要在雷达显示器查看敌坐标。飞行员还可以通过彩色多功能显示器周边上的一个按键,将目标所在区域的雷达成像信号进行合成孔径图像放大处理。而且,雷达每重复一次扫描,都会与之前得到的信息叠加改善成像效果。试飞中通过该雷达的合成孔径图像,飞行员在距离目标37千米以远处能清楚分辨地面上的跑道、滑行道和机库等。据介绍美国波音和雷神公司目前正在为F/A-18E/F飞机研制新型主动电子扫描相控阵雷达,届时探测距离将增大,且搜索跟踪过程将更加迅速快捷。
雷神公司还为F/A-18E/F飞机研制了先进战术前视红外吊舱(ATFLIR),该吊舱将被用来取代原有的导航和目标指示红外传感器,使得该机在恶劣气象和电磁干扰条件下的探测和攻击能力有较大提高。2001年5月,波音已经向雷神公司外包了上述项目的小批量试生产15个吊舱及其配件的合同,合同额为6230万美元。ATFLIR是第三代光电瞄准吊舱,性能有了极大提高,能探测、识别和跟踪空对空导弹与空对地导弹和自动投放现有激光制导武器与防区外武器。F/A-18E将是第一种采用该吊舱的作战飞机。
雷神公司在2002年5月21日正式把第一套生产型ATFLIR吊舱交付给美国海军,并将在6至8年期间交付574套ATFLIR,总费用约为10亿美元。吊舱代号ASQ-228,被认为是现有最强大而经济实惠的瞄准系统,据信比以往的系统,如LANTIRN等效能提高两、三倍,能够更有效地使用诸如联合直接攻击弹药等武器。该吊舱能使得飞行员分辨出坦克和卡车。目前装备试验定于2002年10月进行,初步作战能力计划到2003年形成。
此外,由洛克希德·马丁导弹与火力控制公司和以色列艾尔塔电子公司所组成的集团,于2001年6月从美国海军获得一份关于为F/A-18E/F提供合成孔径雷达SAR的合同。该项计划的目的是分析近期把战术全天候采集和远程合成孔径雷达(TACLSAR)系统的功能综合到海军F/A-18E/F的可能性,以加强全天候侦察和精确空对地瞄准能力。TACLSAR的工作是高度自动化的,在作战过程中能减轻驾驶员的工作负担。在能见度不佳的条件下,如烟雾、云层和各种伪装,能保持其良好的探测性能。
由于气动外形的改进,该机短距起降性能得到大大改善。当在14.4千米/小时的迎头风速下起飞时,飞行员可迅速将油门手柄推至“最大”推力状态;待发动机转速稳定后,再迅速将手柄推致“全加力”状态位置,同时解除机轮刹车。这时,总重16吨的F/A-18E/F能很快加速到约225千米/小时的离地速度。实际试验表明从松开刹车到起飞离地,仅需13秒,起飞滑跑距离仅365米。F/A-18E/F在爬升过程中飞行状态很稳定,且在爬升时收起落架和襟翼对于飞机的俯仰姿态影响也不大,俯仰和滚转操纵响应也很理想。从起飞到爬升至5800米高度,耗时约3分钟,耗油约680千克。由于载油量增加,作战半径也大大增加,比原来的C型增加了约26%。
通过种种措施,F/A-18E/F首次具有了某些超常规机动能力。这和增大翼面积、加长边条、改进飞行控制系统设计、改进发动机等有直接关系。试飞中飞行员操纵飞机以M0.84的速度、3810米/分的爬升率爬升至7620米的高度,再改平,将收油门到慢车位置,作减速飞行。当速度减至480千米/小时时,打开减速板,飞机即可迅速减速。和以往大多数战斗机不同,F/A-18E/F没有专门的减速板,而是通过飞行控制系统驱动各个翼面进行协调的偏转(包括副翼和阻流板),从而达到增阻减速的目的。这种虚拟“减速板”的综合效能优于传统的减速板,且减速中除俯仰方向上稍有变化外,飞行姿态基本不受影响。
F/A-18E/F在飞行迎角为35°时,飞机仍具有良好的操纵性,飞机迎角可控精度在1°以内。飞行控制系统还能自动取消飞行员在大迎角飞行时可能导致飞机失控的错误操作。飞行员还可以使迎角迅速增大到59°、俯仰姿态角增大到45°,此时飞机仍能很好的操纵。这在近距格斗空战中将是十分有用的,也说明美军在下了-番功夫后,也使得自己的战斗机获得了近似Su-27做“普加乔夫眼镜蛇”动作的能力。
该机飞行控制系统还采用了偏航角速度反馈,确保机头的指向始终向前。在45°坡度、偏航角速度为6.25°/秒的极端条件下,飞行员仍可精确控制飞机的航向。要大迎角状恋中改出也比较简单,只要将驾驶杆前推到底,可使飞机很快形成17°/秒的低头角速度,在数秒时间内就可恢复到正常飞行迎角以内。F/A-18E/F的倒飞大迎角状态同样也十分稳定,在试飞过程中顺利地完成了在-1g过载、迎角为-32°的试飞。空军世界 http://www.airforceworld.com
F/A-18E/F在飞行迎角为35°时,飞机仍具有良好的操纵性,飞机迎角可控精度在1°以内。飞行控制系统还能自动取消飞行员在大迎角飞行时可能导致飞机失控的错误操作。飞行员还可以使迎角迅速增大到59°、俯仰姿态角增大到45°,此时飞机仍能很好的操纵。这在近距格斗空战中将是十分有用的,也说明美军在下了-番功夫后,也使得自己的战斗机获得了近似Su-27做“普加乔夫眼镜蛇”动作的能力。
该机飞行控制系统还采用了偏航角速度反馈,确保机头的指向始终向前。在45°坡度、偏航角速度为6.25°/秒的极端条件下,飞行员仍可精确控制飞机的航向。要大迎角状恋中改出也比较简单,只要将驾驶杆前推到底,可使飞机很快形成17°/秒的低头角速度,在数秒时间内就可恢复到正常飞行迎角以内。F/A-18E/F的倒飞大迎角状态同样也十分稳定,在试飞过程中顺利地完成了在-1g过载、迎角为-32°的试飞。
F/A-18E/F还能轻松地在纵向垂直的情况下改出大迎角机动。在旋转机动方面表现也相当好。F/A-18E/F在携带空空作战武器的情况下,其飞控系统限制的最大滚转角速度为225°/秒;而在带外挂副油箱或空地作战武器时,其角速度限制为150°/秒。“空空”情况中,在4770米高度上飞行员分别以450千米/小时、670千米/小时的速度,进行全压杆机动飞行,飞机都能在不到2秒时间内完成360°滚转机动。
和以往相比,基本型的F-18A/B飞机曾因为边条失速使飞机失控坠毁。若E/F在任何飞行状态条件下,其飞行控制系统都能确保完成任何急剧的机动飞行动作,而不必顾忌飞行的表速或迎角条件。这种良好的抗失速能力使得E/F型的格斗性能大大提高。
机动性的改进除了气动性能的改进外,飞行控制系统也必须与之配套。F-18E/F的前座飞行员在低空突防时,主要从平显上读取雷达高度数据,F型的后舱飞行员则通过其左侧的数字式显示器读取。F/A-18E/F在进行低空大表速飞行时,能以150米高度、860千米/小时的表速飞行(这时,对应的燃油流量为5100千克/小时)。在低空突防到达目标之前,飞行员可在任务系统的预先编程中设定到达目标的时间预定值。这时,平显左下角显示经风速修正的飞行速度;同时,还给出能令飞机准时到达目标上空的导航信息。机上的惯导系统还能不间断的依次自动给出各个航路点之间的导航信息。
2004年,波音公司确定由汉尼威尔公司为 F/A-18E-F生产新型先进精确导航设备。后者已经为军用航空客户提供了1万多套导航系统。为F/A-18E/F选中H-764嵌入式全球定位系统(GPS)和惯导系统(INS)。该系统可在GPS受到干扰的环境下为军用飞机飞行员提供精确的任务信息。
F/A-18E/F有两种方式增强对飞行员的高度告警。一种是编程控制,利用雷达高度表所提供的信息,当飞行高度低于所设定高度的10%,就会自动发出告警。例如,设定高度为150米,而当实际高度低于135米时,就会发出音响告警信号,并在平显上显示告警信息。另-种是经改进的接地告警系统,该系统同样也能产生告警音响和显示信息,以防飞机撞地。目前F/A-18E/F还只有雷达高度表这种唯-的高度信息源。在陡峭地形环境中,可能无法及时提供恰当的高度告警信息。将来准备利用机上数字式地图和GPS系统补充其高度告警系统,确保在任何地形环境下,也能及时准确的做出高度告警。
在武器方面,除了已有的M61六管20mm加特林机关炮外,增加了两个挂架,使得挂架总数达到11个;可携带各种武器8吨;可携带最新的SLAM空地导弹改进型、JDAM、JSOW等。下图为携带“鱼叉”的F-18战斗机。

SLAM及其改型SLAM-ER是F/A-18当前的对地攻击利器,是在鱼叉弹体基础上发展的对地攻击导弹。该弹曾在海湾战争中创造了后一发弹由前一发弹的穿孔中穿入爆炸的高精度记录。现已有超过300枚SLAM系列投入使用。2002年9月波音公司已完成SLAM-ER的自动目标截获(ATA)能力使用试验与鉴定,使得SLAM-ER更加自动化,命中率提高。ATA试验中,导弹加装了一个任务计算模块,可根据来自导弹红外导引头的信息对目标进行识别,从而将其他一些小目标隔离开来,使导弹飞向所瞄准的目标。此外,该导弹还可以利用来自GPS的信息瞄准目标。波音公司正为美国海军生产该导弹,总数为376枚。预计装有ATA模块的SLAM-ER导弹明年服役,已经服役的早期型号将加装ATA模块。
此外 AGM-88E 先进反辐射导弹将被用于F/A-18 E/F。该弹还将进一步改装新型发动机,以便使导弹长度缩小,从而能够装在 F-35 战机的武器舱内部。除此之外,还将进行多方面的改进,使其能由压制敌对防空( SEAD )转变为摧毁敌对防空( DEAD )。该导弹采用AGM-88的弹体,结构上仅改变了头部和控制舱,采用了双模式制导头和“快销”(Quick Bolt)数据链。该双模式制导头中的被动反辐射接受设备的工作频段比AGM-88要宽得多,并增加了毫米波主动雷达制导技术用于末段精确导引,能准确击中关机状态的雷达目标。“快销”( Quick Bolt )通讯数据链能从载机之外的传感器获得威胁目标的更多信息,同时直到导弹命中目标之前,都能将目标所处状态发回己方用于战斗毁伤评定。该导弹的中段导引采用全球定位系统 / 惯性导引系统,从而可避免出现高速反辐射导弹因敌方雷达关机而偏离该雷达目标的问题。此外可编制禁止攻击区域,导弹即可避开这些不允许攻击的区域,减小误伤。
在试飞中已经进行了F/A-18E/F对地攻击作战的试验。试飞科目为向模拟目标投放450千克炸弹。试验中,距目标5千米时,飞行员在飞行控制系统中选择了以左盘旋拉起的投弹方式。随后飞行员通过平显操纵飞机,保持平显上的目标框覆盖在目标上。在即将到达目标上空600米的高度时,操纵飞机进入滚转倒飞状态,继而以4g的过载向目标方向拉起。紧接着借助于平显目标导引系统,以20度俯冲角滚转改平。这时打开驾驶杆上的投弹按钮保险,在大约460米的高度上完成模拟投弹。之后飞机以突防机动飞行方式脱离目标区。整个过程中,飞行员无需忙于从不同显示装置上读取各种不同信息。只需要在攻击前设定好模式,然后注意力就只需要集中在目标、平显和操纵杆这三者上了。而以往的战斗机飞行员要兼顾过多的仪器和操作,如要低头看高度表、拉油门,往往影响攻击的准确性。
而F-18E/F的自卫系统也有大的改善。在攻击后的脱离过程中,飞行员只需要通过油门杆上的拇指开关,就可以操纵机上所有电子对抗系统,并投放箔条和红外干扰弹。试验中也试飞了躲避地空导弹攻击的科目。在发现导弹袭击后,飞行员立即收油门至慢车位置,并施放箔条、红外弹,同时向左急剧压杆,使飞机以6g的过载向左急转。在转过l80°时操纵飞机滚转改平,当表速减小到580千米/小时,再将油门迅速推至军用推力状态,尽快脱离。为了使飞机能尽快脱离战区,往往开全加力。
F-18E/F战斗力比较以往的F-18有了大幅度的提高。但是也引来非议,主要是有人认为应该发展全新的F-22海军型,而不应该下那么大力气去改进那些旧飞机。但美军认为在JSF服役前,很需要F-18E/F填补时间上的空缺,同时其性能足以应付大多数情况下的需要。其本身也有不足之处,如在亚、跨音速段的加速性偏低,最大飞行速度也较小等。
目前F-18E/F计划进展顺利。美海军第-个“超黄蜂”飞行中队--VFA-122中队在美国加州的Lemoore海军飞行基地,接收了首批7架F-18E/F。该中队还将在未来2年中装备多于34架的F-18E/F“超黄蜂”战斗机。这批战斗机刚结束了海军战机测试中心进行的性能评估。实验表明飞机的性能优良,已基本解决了目前发现的所有问题,因而正式装备VFA-122飞行中队,为大规模服役做进-步的飞行训练和测试。VFA-122飞行中队是在今年1月15日成立的,目前共有165人,计划随着飞机的增加,人数也将达到500人左右。海军的目标是到2001年初,VFA-122中队及其F-18E/F战斗机达到-级训练水平。
F-18E/F的改进工作也在不断进行。其中最重要的是EF-18计划,目的在于为F-18E/F增加更强大的电子战能力,担当“野鼬鼠”任务,目前该计划进展顺利。另外英国航天航空公司将为F-18E/F提供定向红外对抗(TADIRCM)系统。目前在美国海军中国湖靶场进行测试。TADIRCM是海军研究实验室主导的一项高级技术演示项目,系统基于使用激光直接干扰导弹红外引导头的原理。该系统包括6个双色红外传感器,一个信号处理器,一个红外激光调制器和两个指示/跟踪器。另外海军在2001年底开始计划为现役F/A-18E/F加装高级目标定位前视红外(ATFLIR)“终结者”系统功能。主要承包商估计为雷声公司。计划于2005年开始装备。
上图为F-18E/F在地面机场降落,飞机后面的发动机喷气和扰动的空气形成了巨大的涡流;中图为在航空母舰上做弹射起飞试验;下图是-架瑞士空军F-18在山谷中做高速飞行,翼面上扰动的高速气流形成了-团白雾。最下图为非常先进、有多个彩色液晶显示器的F-18E/F座舱。空军世界 http://www.airforceworld.com

2002年11月雷声公司为改进F/A-18E/F研制的APG-79有源电子扫描阵列(AESA)雷达正式完成设计工作。AESA雷达比其前辈(传统的机械扫描雷达)功能更加强大,也更加灵敏。它由成百上千个非常小的收/发(T/R)模块组成,其端面尺寸小到1/2平方英寸(3.23平方厘米),长度仅为1/4英寸(0.64厘米)。这些模块通过各种组合可以实现对目标的搜索、跟踪、识别或者释放杂波对目标传感器进行电子干扰。通过把雷达中部分T/R模块的输出功率聚焦到空域中的一部分,可以延伸雷达的作用距离。事实上,这是第一次使美国战斗机可以在AIM-120 的射程以外跟踪定位目标,并给导弹留有进行战术机动的时间。因为雷达可以搜集确认远距目标特征(身份)的信息,所以美空军已经具有在视距外作战和摧毁敌方飞机的能力。通过对F-15C和F/A-18E/F进行AESA雷达改装,以及本身装备AESA雷达的F/A-22与最新型AIM-120配合可以形成对小型,甚至是隐身的低空飞行的巡航导弹的第一道防线。可以进一步期待将这些AESA的T/R模块组成一部“天基雷达”,它可以向在大气层中飞行的指挥和控制飞机发出敌方目标的告警信息,如移动中的导弹发射装置或低空飞行中的导弹和飞机。五角大楼的官员表示,希望用AESA装备无人作战飞机,来帮助对付巡航导弹。赋予无人作战飞机(UCAV)的第一个作战任务就是攻击敌方的巡航导弹18E/F所装备的APG-79 AESA雷达设计作战模式。目前优先考虑的是防区外攻击 (这需要雷达具有合成孔径地图测绘模式),以及在这种攻,因为巡航导弹是按预定航线飞行,很少机动,比较容易对付。
回到APG-79本身,该雷达将与武器系统现用的子系统综合,如武器存储管理系统、机炮控制系统、AIM-120和AIM-9导弹系统。AESA将增加飞行员对战场情况的了解,降低飞机本身的可探测性,并提高飞机的作战性能。新雷达将于明年初进行进一步试验,2005年作为F/A-18E/F的一部分开始交付。2004年5月,海军的F/A-18和EA-18G 项目经理噶迪斯上校和空军的B-1和F-15(已经改装多台AESA雷达)的项目经理本月在赖特帕特森空军基地召开了一次会议,讨论三方联合进行试验和鉴定的问题。由于F-35"联合攻击战斗机"(装备AESA雷达)具有突破性的成果,使得各方合作开始了新局面。装备F/A-18E/F的3部AESA雷达系统将于6月份开始在中国湖的海空作战中心进行新一轮的试验。每架飞机每个月计划在中国湖试飞12个架次。试飞结果将反馈到海军领导的作战小组,为F/A-击模式所需飞行包线内的生存力提高问题。F/A-18 先进武器实验室AESA采购负责人表示,目前正在寻求解决以下问题:目前,AESA雷达的作用距离已经是老雷达的一倍,可以创造一些什么新的战术?一个双机或4机编队怎样分工完成空对空和空对地的攻击任务?如何由一架装有AESA的战机引领一批没有装载AESA的普通战斗机提高他们的战斗能力?
F-18的APG-73雷达

2004年10月,雷声公司表示期待着在2005年第一季度得到一份继续制造该雷达的合同。雷声公司在制造了22部APG-79有源相控阵雷达后,将要接受第三个小批量生产该雷达的合同。雷声公司在2003年7月得到了第一个小批量生产8部APG-79雷达的合同;在2004年2月得到了第二个小批量生产12部雷达的合同;而第四个小批量雷达生产合同将于2007年第一季度签署。之后将会开始批量生产APG-79雷达。美国海军计划为F/A-18E/F和EA-18G采购415部APG-79,研发和生产总费用达10亿美元。该雷达的空空和空地模式的试验正在加州中国湖试验基地进行,状况良好。估计可以在2005年末完成所有研发阶段的试验。海军希望该雷达能在2006年10月份形成初始作战能力(IOC)。