印度板块 向 亚洲板块 俯冲导致 汶川地震

来源:百度文库 编辑:神马文学网 时间:2024/04/30 04:09:36
地震成因:板块间的碰撞、拉伸、错位     空间  时间  强度
地震  推演法:
上地壳  转换层  滑移层  下地壳
GPS  坐标  观察的关键:滑移层
上地壳的下部,或锁定层的下部 与 转换层发生断裂  形成地震
归纳法:    地电场  地磁场  地下水位  动物活动  地震云
洛杉矶  必然发生地震
-------------------------------------------------------
印度板块边缘的逆冲型地震,逆冲型地震的成因是地层断层的上部上移。
-----------------------------------------------
印度板块向亚洲板块俯冲导致汶川地震
中国地质调查局初步监测和评价认定,汶川地震是印度板块向亚洲板块俯冲所致,震源深度为10千米-20千米,释放出的能量相当于二百五十二颗原子弹爆炸的威力。持续时间较长,因此破坏性巨大。
震央在四川成都西北方九十二公里处,芮氏规模高达七点八,震源深度二十九公里。学理上,地震强度每增加芮氏一级的规模,所释放出的能量就增加三十二倍,虽然今天下午在四川发生的规模七点八地震,规模与台湾九二一地震只差零点五,但释放出的能量大约是九二一大地震的二十倍以上。(台湾国立中正大学地震研究所教授 陈朝辉)
地质调查局航遥中心、环境监测院、地科院、地质所、地质力学所等单位的专家根据各自调查监测和评价研究的结果对灾情进行“会诊”后,对汶川地震的发生原因做出了初步结论。
据悉,印度板块每年以4厘米的速度向亚洲板块俯冲(见图),造成青藏高原快速隆升。高原物质向东缓慢流动,在高原东缘沿龙门山构造带向东挤压,遇到四川盆地之下刚性地块的顽强阻挡,造成构造应力能量的长期积累,最终在龙门山北川-映秀地区突然释放,造成了本次汶川地震。
汶川地震是逆冲、右旋、挤压型断层地震。第一,发震构造是龙门山构造带中央断裂带,在挤压应力作用下,由南西向北东逆冲运动。第二,这次地震属于单向破裂地震,由南西向北东迁移,致使余震向北东方向扩张。第三,挤压型逆冲断层地震在主震之后,应力传播和释放过程比较缓慢,可能导致余震强度较大,持续时间较长。
此外,地质调查局的相关专家表示,汶川地震属“浅源地震”。汶川地震不属于深板块边界的效应,发生在地壳脆-韧性转换带,震源深度为10~20千米,因此破坏性巨大。据悉,浅层地震震源深度在0-70公里范围内,相对破坏面积较大,1995年神户7.2级地震的震源深度约10公里,1976年唐山7.8级地震的震源深度约22公里,均属浅源地震。地震专家特别提醒,鉴于汶川地震出现的特征,表明青藏高原大陆动力作用的新动向,应该引起关注。
-----------------------------------------------
地震纵波和横波
我们最熟悉的波动是观察到水波。当向池塘里扔一块石头时水面被扰乱,以石头入水处为中心有波纹向外扩展。这个波列是水波附近的水的颗粒运动造成的。然而水并没有朝着水波传播的方向流;如果水面浮着一个软木塞,它将上下跳动,但并不会从原来位置移走。这个扰动由水粒的简单前后运动连续地传下去,从一个颗粒把运动传给更前面的颗粒。这样,水波携带石击打破的水面的能量向池边运移并在岸边激起浪花。地震运动与此相当类似。我们感受到的摇动就是由地震波的能量产生的弹性岩石的震动。
假设一弹性体,如岩石,受到打击,会产生两类弹性波从源向外传播。第一类波的物理特性恰如声波。声波,乃至超声波,都是在空气里由交替的挤压(推)和扩张(拉)而传递。因为液体、气体和固体岩石一样能够被压缩,同样类型的波能在水体如海洋和湖泊及固体地球中穿过。在地震时,这种类型的波从断裂处以同等速度向所有方向外传,交替地挤压和拉张它们穿过的岩石,其颗粒在这些波传播的方向上向前和向后运动,换句话说,这些颗粒的运动是垂直于波前的。向前和向后的位移量称为振幅。在地震学中,这种类型的波叫P波,即纵波,它是首先到达的波。
弹性岩石与空气有所不同,空气可受压缩但不能剪切,而弹性物质通过使物体剪切和扭动,可以允许第二类波传播。地震产生这种第二个到达的波叫S波。在S波通过时,岩石的表现与在P波传播过程中的表现相当不同。因为S波涉及剪切而不是挤压,使岩石颗粒的运动横过运移方向。这些岩石运动可在一垂直向或水平面里,它们与光波的横向运动相似。P和S波同时存在使地震波列成为具有独特的性质组合,使之不同于光波或声波的物理表现。因为液体或气体内不可能发生剪切运动,S波不能在它们中传播。P和S波这种截然不同的性质可被用来探测地球深部流体带的存在。
S波具有偏振现象,只有那些在某个特定平面里横向振动(上下、水平等)的那些光波能穿过偏光透镜。穿过的光波称之为平面偏振光。太阳光穿过大气是没有偏振的,即没有光波振动的优选的横方向。然而晶体的折射或通过特殊制造的塑料如偏光眼睛,可使非偏振光成为平面偏振光。
当S波穿过地球时,它们遇到构造不连续界面时会发生折射或反射,并使其振动方向发生偏振。当发生偏振的S波的岩石颗粒仅在水平面中运动时,称为SH波。当岩石颗粒在含波传播方向的水质平面里运动时,这种S波称为SV波。
大多数岩石,如果不强迫它以太大的振幅振动,具有线性弹性,即由于作用力而产生的变形随作用力线性变化。这种线性弹性表现称为服从虎克定律,是以与牛顿同时代的英国数学家罗伯特.虎克(1635~1703年)而命名的。相似的,地震时岩石将对增大的力按比例地增加变形。在大多数情况下,变形将保持在线弹性范围,在摇动结束时岩石将回到原来位置。然而在地震事件中有时发生重要的例外表现,例如当强摇动发生于软土壤时,会残留永久的变形,波动变形后并不总能使土壤回到原位,在这种情况下,地震烈度较难预测。
弹性的运动提供了极好的启示,说明当地震波通过岩石时能量是如何变化的。与弹簧压缩或伸张有关的能量为弹性势,与弹簧部件运动有关的能量是动能。任何时间的总能量都是弹性能量和运动能量二者之和。对于理想的弹性介质来说,总能量是一个常数。在最大波幅的位置,能量全部为弹性势能;当弹簧振荡到中间平衡位置时,能量全部为动能。我们曾假定没有摩擦或耗散力存在,所以一旦往复弹性振动开始,它将以同样幅度持续下去。这当然是一个理想的情况。在地震时,运动的岩石间的摩擦逐渐生热而耗散一些波动的能量,除非有新的能源加进来,像振动的弹簧一样,地球的震动将逐渐停息。对地震波能量耗散的测量提供了地球内部非弹性特性的重要信息,然而除摩擦耗散之外,地震震动随传播距离增加而逐渐减弱现象的形成还有其他因素。
由于声波传播时其波前面为一扩张的球面,携带的声音随着距离增加而减弱。与池塘外扩的水波相似,我们观察到水波的高度或振幅,向外也逐渐减小。波幅减小是因为初始能量传播越来越广而产生衰减,这叫几何扩散。这种类型的扩散也使通过地球岩石的地震波减弱。除非有特殊情况,否则地震波从震源向外传播得越远,它们的能量就衰减得越多。
-----------------------------------------------
四川省位于印度板块和欧亚板块这两个大陆板块的交界处附近,特别容易发生地震。五千万年前,印度板块在与欧亚板块碰撞之前是个岛屿;目前印度板块在以每年两英寸的速度向北推移——对板块漂移来说,这是个不慢的速度。
这种快速运动意味着在大陆板块的边缘部位积聚了较大的能量,进而引发能量的剧烈释放,也就是地震。据美国地质调查局(U.S. Geological Survey)称,如此强度的地震每50到100年会发生一次。
不仅如此,日本筑波大学(Tsukuba University)研究员Yuji Yagi牵头的一个地震研究小组表示,汶川地震可能是沿着断层线分两个不同阶段爆发的,这种情况非常罕见。可能因此而导致地震强度增大、时间延长。
该研究小组称,第一阶段是沿着龙门山断层线的运动,造成23英尺宽的地壳断裂,约为时50秒。随后不久,沿着该断层线的另外一个部分很可能发生了持续60秒的小滑移。(Yagi说,这就意味着这个地区经历了为时两分钟的强烈地震。与此相比,造成6,000多人死亡的1995年日本神户发生的强烈地震只有20秒,能量也不足汶川地震的1/30。
其他科学家还指出,汶川地震震源离地表较近,只有6英里。震源浅的地震造成的破坏性更大,因为能量的释放距离地面更近,引发的震动更剧烈。
不仅如此,由于中国所在大陆板块年代已久,很多地区地壳都很脆,且构造相似。东京大学(Tokyo University)地震研究所的Teruyuki Kato说,这样的情况,会地震形成的冲击波能传播数百英里,而能量却没有明显衰减,就像光波在光纤里传播一样。离震中约1,000英里远的上海都有震感。
与此同时,在距离震中较近的地区,由于长江在四川盆地形成了厚厚的沉积层,地质结构不稳定,震动更为严重。研究者表示,不牢固的地层使地震的破坏力增大;而且土壤肥沃的四川盆地人口密集,增大了人员伤亡的数量。
当然,有些问题还未找到答案。科学家们表示,该地区的地震研究也因为频繁的塌方而受阻,塌方掩埋了很多地质构造证据,比如地表的裂纹或暴露的山脊。
Kato说,我们需要进行更多的研究来找到确切成因。不过很清楚的一点是,我们正在研究的是个地震相当活跃的地区。
-------------------------------------------------------------------
地震的预报和预防
强烈的地震是严重的自然灾害,威胁人们的生命财产与安全,影响国计民生。预报地震是地震和地质工作者的神圣使命。按距离地震发生时间,预报分为中长期预报、短期预报和震前预报。中长期预报主要通过地震和地质情况的调查研究来实施。短期预报,既要靠地震和地质情况的调查研究,还要靠运用各种监测手段。震前预报主要靠各种监测手段。地震监测主要是利用各种仪器设备去研究岩石中正在发生的各种物理变化。地震仪对微弱震能进行连续记录,分析研究记录,可以推断地震的发震趋势。此外,天气和动物的异常反应,地光、地声的产生,也是地震将到来的预兆。
地震的预防主要在于提高建筑物的抗震能力。在设计与施工中应根据地震区划的资料作出相应的抗震措施,特别是大型矿山、水库、重大工程设施以及工业建设等要严格符合抗震要求。抗震建筑的实质在于加强建筑物的整体性、结构的牢固程度及地基的稳固性。有许多现代的大都市都是位于地震带上。想要减少地震造成大浩劫的方法之一,就是设计一些足以承受致命震撼的建筑物。
四川发生规模7.8级的超级大地震,自然引发世界各地处于地震带的民众对地震的恐慌,因此有好多人提出质疑,为什么地震不可以预测?大多数美国地震学家认为地震是难以预测的,
那么是否有其他的方式将地震造成的灾害和损失减少到最低呢?比如说从设计的角度,对开发抗震设计等等。加利福尼亚理工大学的地震学教授托马斯·希顿就指出:即使拥有最好的工程设计,四川地震造成的大部分破坏也是不可能避免的。这场地震是一次十分严重的自然灾害,如果发生在洛杉矶,它仍会是灾难性的。希顿说,虽然地震在中国并不罕见,但是专家们仍不能事先发出预报。 他说“这是预测不到的。我们可以画出我们认为在一千年时间里最有可能发生地震的地图来,但是要预测在一代人的时间里可能发生的地震是件很难的事情。”
-------------------------------------------------------------------
根据文献资料记载,历史上规模最大的地震发生在1960年五月二十二日,地点在智利,芮氏规模九点五;其次是1964年三月二十八日阿拉斯加地震,规模九点二;史上第三大地震,发生于1957年三月九日的阿拉斯加,规模九点一。史上第四大地震,高达芮氏规模九,总共有二次,分别是1952年十一月四日堪察加半岛,以及2004年十二月二十六日苏门答腊。其中,苏门答腊引发的南亚海啸,造成近二十三万人死亡、超过五十一万人受伤。 发生于1976年七月二十八日的唐山大地震,规模也是芮氏七点八,整个唐山市几乎被夷为平地,当年造成二十四万余人死亡。
地震带分布
环太平洋地震带:
分布于濒临太平洋的大陆边缘与岛屿。从南美西海岸安第斯山开始,向南经南美洲南端、马尔维纳斯群岛(福克兰群岛)到南乔治亚岛;向北经墨西哥、北美洲西岸、阿留申群岛、堪察加半岛、千岛群岛到日本群岛;然后分成两支,一支向东南经马里亚纳群岛、关岛到雅浦岛,另一支向西南经琉球群岛、我国台湾、菲律宾到苏拉威西岛,与地中海--印尼地震带汇合后,经所罗门群岛、新赫布里底群岛、斐济岛到新西兰。其基本位置和环太平洋火山带相同,但影响范围较火山作用带稍宽,连续成带性也更明显。这条地震带集中了世界上80%的地震,包括大量的浅源地震、90%的中源地震、几乎所有深源地震和全球大部分的特大地震。
地中海-印度尼西亚地震带:
西起大西洋亚速尔群岛,向东经地中海、土耳其、伊朗、阿富汗、巴基斯坦、印度北部、中国西部和西南部边境、经过缅甸到印度尼西亚,与环太平洋地震带相接。它横越欧亚非三洲,全长2万多公里,基本上与东西向火山带位置相同,但带状特性更加鲜明。该带集中了世界15%的地震。主要是浅源地震和中源地震,缺乏深源地震。
洋脊地震带:
分布在全球洋脊的轴部,均为浅源地震,震级一般较小。
此外,大陆内部还有一些分布范围相对较小的地震带。如东非裂谷地震带。我国邻近环太平洋地震带和地中海--印尼地震带的交接地区,地震频繁。历史上以及近期都发生过破坏性地震。如1966年邢台地震,1973年甘孜地震,1974年海城营口地震,1975年溧阳地震、炉霍和道孚地震,1976年唐山地震和云南昭通地震,1977年溧阳地震。这些地震除发生在溧阳的两次地震略低于7级外,其余均在7级以上。