盘点十大飞行技术:哪个能把人类送入外太空[组图]

来源:百度文库 编辑:神马文学网 时间:2024/04/29 03:03:03
 盘点十大飞行技术 哪个能把人类送入外太空[组图] 2010年01月17日 17:26 新华网 来源:中青网

英国维珍银河公司建造的“宇宙飞船二号”将在2010年初进行首次试航。

    人类进入太空已有近50年历史,但时至今日,月球仍是人类足迹所能达到的最远区域。是什么阻碍了我们探索宇宙的脚步?人类该向什么方向发展技术,才能对真正意义上的深空进行探索?英国《新科学家》杂志日前刊登文章,对未来可能帮助人类进入深空的10种外太空飞行技术进行了分析。

    除了预算问题和政治意愿这两大因素外,太空探索计划面临的另一个巨大障碍,就是当前占据统治地位的太空飞行技术——化学燃料推进火箭——尚无法将人类送上更远的星球。

    阿波罗10号月球探测器是历史上速度最快的载人航天器,其最大时速为39895公里。照这个速度,它需要12万年才能抵达离我们最近的恒星系统。要对真正意义上的深空进行探索,我们就必须研发出新技术。以下列举的是十大最令人着迷的太空飞行技术,其中一些在未来很可能成为现实,另一些则可能止于幻想。

  1.离子推进器

    传统火箭通过尾部高速喷射气体产生推进力,离子推进器的工作原理也一样,不同的是,它喷射的不是高温气体,而是带电粒子流。目前离子推进器产生的推进力较小,但消耗的燃料远低于火箭。一些飞船已采用离子推进器,如日本的“隼鸟”号小行星探测飞船,以及欧洲的“智能1号”撞月飞船。

    令人欣慰的是,这种技术正稳步提高。离子推进器一个特别有发展前景的变体是可变比冲磁等离子体火箭(VASIMR)。离子推进器利用强大的电场加速离子,而VASIMR则利用射频发生器 ——与用于播放电台节目的发射机类似——将离子加热到100万摄氏度。离子在VASIMR的强磁场内以固定频率旋转,射频发生器随后也改为这个频率,将额外的能量注入离子,并极大地提升推进力。

    可能性:几年后有望成真。

  2.核脉冲推进

    核脉冲推进听起来是一种“全然不计后果”的方式——定时从后部将核弹扔出舱外并引爆,利用核爆威力推动飞船前进。

    美国国防高级研究计划局曾开启秘密研制核脉冲推进动力飞船的“猎户座计划”。即使按照今天的标准,这项设计也可以用“巨大”来形容。他们建议研制一种巨型减震器,同时用厚重的辐射防护屏障保护乘客。

    核脉冲推进似乎可以发挥作用,但行进途中产生的辐射尘让人担忧。上世纪60年代,随着第一批核试验禁令生效,猎户座计划被束之高阁。现在,一些研究人员仍在提出与核脉冲推进类似的想法。从理论上说,依靠引爆核弹推进的飞船速度可达光速的十分之一,允许人类在大约40年内造访离地球最近的恒星。

  可能性:极高,但存在一定危险性。

  3.核聚变火箭

    核火箭是另一项利用核能量的太空飞行技术,它能利用飞船所携裂变反应堆产生的热量驱逐空气,进而获得推动力。但如果比拼能量,这种方式与核聚变火箭相比显得黯然失色。

    核聚变过程中,原子核结合成更大的核,同时释放出巨大能量。绝大多数核聚变反应堆设计利用托卡马克装置(利用磁约束来实现受控核聚变的环性容器)将燃料约束在一个磁场内产生核反应。但托卡马克重量极大,因此,核聚变火箭设计趋向于采用另一种触发核聚变的方式——惯性约束聚变。

    这种设计利用高功率能量束取代托卡马克的磁场,通常采用的是激光。能量束猛烈轰击燃料,使其外层发生爆炸,爆炸威力随后传导到内层并最终触发核聚变。在此之后,磁场引导产生的炽热等离子体从飞船尾部喷出,进而产生推进力。

    上世纪70年代,英国行星际协会在其 “代达罗斯计划”中对这种核聚变火箭进行了研究。它能帮助人类在50年内抵达另一颗恒星,在这段飞行时间内,宇航员能继续生存的可能性极高。而当前的现实是:尽管努力了数十年之久,但科学家们仍未研制出一个可以工作的惯性约束聚变反应堆。

    可能性:可能实现,但要等待数十年。

    美国东部时间7月15日18时3分(北京时间16日6时3分),美国“奋进”号航天飞机从佛罗里达州肯尼迪航天中心发射升空,启程前往国际空间站。新华社/路透

  4.巴萨德冲压式喷气发动机

    所有火箭均面临同样的基础性问题:为获得更高加速度,需要携带更多燃料,但这样就提高了航天器重量,反过来降低加速度。

    巴萨德冲压式喷气发动机能巧妙地解决这个问题。它也是一种核聚变火箭,但获得推动力的方式不是依靠核燃料,而是将来自周围空间的氢离子化,再利用巨大的电磁场将氢离子吸入体内。但由于星际空间中的氢数量极少,电磁场的宽度可能不得不达到数百甚至数千公里。一种可能的“手段”是按照计算出来的轨道提前从地球发射燃料,让飞船在无需巨大电磁场的情况下沿路“拾取”燃料。然而这也意味着,冲压式喷气发动机背离了最初的设计。

    可能性:在技术上面临巨大挑战。

  5.太阳帆

    这是另一种无需面对燃料携带问题的技术。与风帆借用风力的原理一样,太阳帆从太阳放射的光线中获取能量。这项技术在地球真空室测试中已取得成功,但在轨道进行的测试却每每发生不幸。

    2005年,美国帕萨迪纳行星协会发射了一艘名为“宇宙1号”的太阳帆飞船,但负责将飞船送入太空的火箭因发生故障土崩瓦解。美国另一项在太空建立太阳帆的任务“NanoSail-D”,也因火箭故障以失败告终。

    尽管面临一系列问题,太阳帆仍是一种非常有发展前景的太空飞行技术,至少对太阳系内的太空飞行来说是如此。

    可能性:有可能,但存在局限性。

    6.磁帆

    磁帆是太阳帆的一个变体,利用太阳风获得推进力。太阳风是一个带电粒子流,拥有自身的磁场。

    磁帆或类似技术可用于在行星磁场上进行“冲浪”,使飞船能够变轨,甚至摆脱行星际空间。然而,无论是太阳帆还是磁帆都不是进行星际旅行的理想方式,一旦远离太阳,所能获得的阳光和太阳风强度便急剧下降。

  可能性:可能,但只限于短途旅行。

  7.能量射束推进

    如果太阳无法提供足够能量,我们也许能靠自己的力量做到这一点,具体方式就是向太空释放强大的能量射束。激光烧蚀便是这样一种技术——飞船的金属板在从地面发射的强激光照射下逐渐汽化,而金属汽化能为飞船提供推进力。

    星际旅行最理想的方式可能就是借助强激光推进的光帆了。能量射束推进面临一系列挑战,其中包括射束必须在极远距离内实现准确聚焦,飞船必须在几乎不浪费的情况下使用全部所获能量,以及产生射束的设备需要达到巨大功率——在一些情况下,需要的能量超过整个人类社会当前输出的能量总和。

  可能性:面临极大挑战。

    8.埃尔库比尔引擎

    埃尔库比尔引擎实际上就是电影《星际迷航》中出现的曲速引擎,最初由英国物理学家马格尔·埃尔库比尔于1994年提出。这种引擎利用的是至今未被发现的“奇异物质”——拥有负质量并具有极大负压(比大气压更低的气压状态)的粒子。曲速引擎能扭曲时空,让飞船前方的空间收缩,后方的空间膨胀。在这种情况下,置身于一个“曲速泡”内的飞船能在不违背相对论的前提下超光速飞行。

    然而埃尔库比尔引擎面临大量问题,其中之一就是维持曲速泡所需的能量超过宇宙的总能量。此外,曲速引擎会产生大量辐射,威胁宇航员的生命安全。更为重要的是,当前没有任何证据显示“奇异物质”确实存在。2002年发表的计算结果显示,飞船无法向曲速泡前方发射信号,这意味着机组人员无法操控飞船。

    可能性:看上去似乎不可能。

  9.虫洞

    经常在科幻小说中出现的所谓“虫洞”是指类似隧道的捷径,进入之后可穿越时空。虫洞真的存在吗?如果存在,我们是否能在虫洞中穿行?

    不幸的是,两个问题的答案可能都是“不”。虫洞需要借助埃尔库比尔引擎使用的奇异物质保持自身稳定,而这种物质可能并不存在。

    上世纪90年代,物理学家提出了另一种可以穿行的虫洞设想——虫洞处于自我维持状态,能产生自己的奇异物质保持洞口张开。但这种设想同样遭遇严峻挑战:如果可以用于太空中的物质运输,这种虫洞也可用于制造时间机器,如此一来就违背了因果律(任何一种现象或事物都必然有其原因)。

    可能性:几乎不可能。

  10.超空间发动机

    如果宇宙拥有更多维度,而不是我们观测到的3个维度,采用超空间发动机的飞船以极速穿行于多维空间的可能性便是存在的。超空间发动机立基于德国物理学家巴克哈德·海姆提出的一项宇宙构造理论 ——如果超空间发动机能创造一个足够强大的磁场或重力场,身处其中的飞船便可进入另一个完全不同的多维空间。

    海姆在世时,这一理论从未得到同行的认同,绝大多数现代物理学家也以“非常难于理解”为由将之弃置一旁。

    可能性:目前看不到可能性。(《青年参考》任秋凌)

点击进入更多精彩>>>