射频识别(RFID)技术及其应用(下)--立帜网

来源:百度文库 编辑:神马文学网 时间:2024/04/27 19:52:24
射频识别(RFID)技术及其应用(下)
2008-12-18 11:35:00 【文章字体:  】推荐 收藏 打印
3.2 RFID技术研究
当前,RFID技术研究主要集中在工作频率选择、天线设计、防冲突技术和安全与隐私保护等方面。
3.2.1 工作频率选择
工作频率选择是RFID技术中的一个关键问题。工作频率的选择既要适应各种不同应用需求,还需要考虑各国对无线电频段使用和发射功率的规定。当前 RFID工作频率跨越多个频段,不同频段具有各自优缺点,它既影响标签的性能和尺寸大小,还影响标签与读写器的价格。此外,无线电发射功率的差别影响读写器作用距离。
低频频段能量相对较低,数据传输率较小,无线覆盖范围受限。为扩大无线覆盖范围,必须扩大标签天线尺寸。尽管低频无线覆盖范围比高频无线覆盖范围小,但天线的方向性不强,具有相对较强的绕开障碍物能力。低频频段可采用1至2个天线,以实现无线作用范围的全区域覆盖。此外,低频段电子标签的成本相对较低,且具有卡状、环状、钮扣状等多种形状。
高频频段能量相对较高,适于长距离应用。低频功率损耗与传播距离的立方成正比,而高频功率损耗与传播距离的平方成正比。由于高频以波束的方式传播,故可用于智能标签定位。其缺点是容易被障碍物所阻挡,易受反射和人体扰动等因素影响,不易实现无线作用范围的全区域覆盖。高频频段数据传输率相对较高,且通讯质量较好。表2为RFID频段特性表。 表2 RFID频段特性

3.2.2 RFID天线研究
天线是一种以电磁波形式把无线电收发机的射频信号功率接收或辐射出去的装置。天线按工作频段可分为短波天线、超短波天线、微波天线等;按方向性可分为全向天线、定向天线等;按外形可分为线状天线、面状天线等。
受应用场合的限制,RFID标签通常需要贴在不同类型、不同形状的物体表面,甚至需要嵌入到物体内部。RFID标签在要求低成本的同时,还要求有高的可靠性。此外,标签天线和读写器天线还分别承担接收能量和发射能量的作用,这些因素对天线的设计提出了严格要求。当前对RFID天线的研究主要集中在研究天线结构和环境因素对天线性能的影响上。
天线结构决定了天线方向图、极化方向、阻抗特性、驻波比、天线增益和工作频段等特性。方向性天线由于具有较少回波损耗,比较适合电子标签应用;由于RFID标签放置方向不可控,读写器天线必须采取圆极化方式(其天线增益较大);天线增益和阻抗特性会对RFID系统的作用距离产生较大影响;天线的工作频段对天线尺寸以及辐射损耗有较大影响。
天线特性受所标识物体的形状及物理特性影响。如金属物体对电磁信号有衰减作用,金属表面对信号有反射作用,弹性基层会造成标签及天线变形,物体尺寸对天线大小有一定限制等。人们根据天线的以上特性提出了多种解决方案,如采用曲折型天线解决尺寸限制[11],采用倒F型天线解决金属表面的反射问题 [12]等。
天线特性还受天线周围物体和环境的影响。障碍物会妨碍电磁波传输;金属物体产生电磁屏蔽,会导致无法正确地读取电子标签内容;其他宽频带信号源,比加发动机、水泵、发电机和交直流转换器等,也会产生电磁干扰,影响电子标签的正确读取。如何减少电磁屏蔽和电磁干扰,是RFID技术研究的一个重要方向。
3.2.3 防冲突技术研究
鉴于多个电子标签工作在同一频率,当它们处于同一个读写器作用范围内时,在没有采取多址访问控制机制情况下,信息传输过程将产生冲突,导致信息读取失败。同时多个阅读器之间工作范围重叠也将造成冲突。文献[13]提出了Colorwave算法以解决阅读器冲突问题。根据电子标签工作频段之不同,人们提出了不同的防冲突算法。
对于标签冲突,在高频(HF)频段,标签的防冲突算法一般采用经典ALOHA协议。使用ALOHA协议的标签,通过选择经过一个随机时间向读写器传送信息的方法,来避免冲突。绝大多数高频读写器能同时扫描几十个电子标签。在超高频(UHF)频段,主要采用树分叉算法来避免冲突。同采用ALOHA协议的高频频段电子标签相比,树分叉算法泄漏的信息较多,安全性较差。
上面两种标签防冲突方法均属于时分多址访问(TDMA)方式,应用比较广泛。除此之外,目前还有人提出了频分多址访问(FDMA)和码分多址访问(CDMA)方式的防冲突算法,主要应用于超高频和微波等宽带应用场景。
3.2.4 安全与隐私问题
RFID安全问题集中在对个人用户的隐私保护、对企业用户的商业秘密保护、防范对RFID系统的攻击以及利用RFID技术进行安全防范等多个方面。面临的挑战是:
·保证用户对标签的拥有信息不被未经授权访问,以保护用户在消费习惯、个人行踪等方面的隐私;
·避免由于RFID系统读取速度快,可以迅速对超市中所有商品进行扫描并跟踪变化,而被利用来窃取用户商业机密;
·防护对RFID系统的各类攻击,如:重写标签以窜改物品信息;使用特制设备伪造标签应答欺骗读写器以制造物品存在的假相;根据RFID前后向信道的不对称性远距离窃听标签信息;通过干扰RFID工作频率实施拒绝服务攻击;通过发射特定电磁波破坏标签等;
·如何把RFID的唯一标识特性用于门禁安防、支票防伪、产品防伪等。
为了避免RFID标签给客户带来关于个人隐私的担忧,同时也为了防止用户携带安装有标签的产品进入市场所带来的混乱,很多商家在商品交付给客户时把标签拆掉。这种方法无疑增加了系统成本,降低了RFID标签的利用率,并且有些场合标签不可拆卸。为解决上述安全与隐私问题,人们还从技术上提出了多种方案,如表3所示。 表3 RFID标签安全与隐私保护方法

3.3 RFID应用研究
基于RFID标签对物体的唯一标识特性,引发了人们对基于RFID技术的应用进行研究的热潮。物流与实物互联网是当前RFID应用研究的热点,其他应用研究还包括空间定位与跟踪、普适计算、系统安防等多个方面。
3.3.1 物流与实物互联网
实物互联网是通过给所有物品贴上RFID标签,在现有互连网基础之上构建所有参与流通的物品信息网络。实物互联网的建立将对生产制造、销售、运输、使用、回收等物品流通的各个环节,并将对政府、企业和个人行为带来深刻影响。通过实物互联网,世界上任何物品都可以随时随地按需的被标识、追踪和监控。实物互联网被视为继Internet后IT业的又一次革命。
为了实现实物互联网的目标,EPCglobal在基本RFID系统的基础上引入了Savant、对象名字服务ONS(Object Name Service)、物理标识语言PML(Physical Markup Language)[7]等多项核心技术。在实物互联网中,产品在生产完成时,贴上存储有EPC标识的RFID标签,此后在产品的整个生命周期,该EPC 代码成为产品的唯一标识,以此EPC编码为索引能实时的在EPC网络上查询和更新产品相关信息,也能以它为线索,在各个流通环节对产品进行定位追踪。在运输、销售、使用、回收等任何环节,当某个阅读器在其读取范围内监测到标签的存在,就会将标签所含EPC数据传往与其相连的Savant,Savant首先以该EPC数据为键值,在本地ONS服务器获取包含该产品信息的EPC信息服务器的网络地址,然后Savant根据该地址查询EPC信息服务器,获得产品的特定信息,进行必要的处理后,触发后端企业应用做更深层次的计算,同时,本地EPC信息服务器和源EPC信息服务器对本次阅读器读取进行记录和修改相应数据。如果本地ONS不能查阅到EPC编码对应的EPC信息服务器地址,它会向远程ONS发送解析请求。整个实物互联网架构如图5所示。
图5 实物互联网架构图
RFID标签在物流领域的应用将产生大量RFID数据。以100个阅读器规模的RFID系统为例,每个阅读器每秒进行10次遍历,整个系统每天产生的RFID数据可达1000G规模。如何对RFID数据进行采集、过滤、分析、存储和提取也是当前RFID研究的热点之一。
3.3.2 空间定位与跟踪
无线及移动通信设备的普及带动了人们对位置感知服务的需求,人们需要确定物品的三维坐标并跟踪其变化。现有的定位服务系统主要包括基于卫星定位的 GPS系统、基于红外线或超声波的定位系统以及基于移动网络的定位系统。RFID的普及为人与物体的空间定位与跟踪服务提供了一种新的解决方案。RFID 定位与跟踪系统主要利用标签对物体的唯一标识特性,依据读写器与安装在物体上的标签之间射频通信的信号强度来测量物品的空间位置,主要应用于GPS系统难以应用的室内定位。
典型的RFID定位与跟踪系统包括MIT Oxygen项目开发的Cricket系统[14]、密歇根州立大学的LANDMARC系统[15]、微软公司的RADAR系统[16]。针对RFID标签价格低廉的特点,通过引入参考标签,采用RFID标签作为参考点[15],能够提高系统定位精度,同时降低系统成本。
3.3.3 普适计算
RFID标签具有对物体的唯一标识能力,可以通过与传感器技术相结合,感知周围物品和环境的温度、湿度和光照等状态信息[19],并利用无线通信技术方便地把这些状态信息及其变化传递到计算单元,提高环境对计算模块的可见度,构建未来普适计算的基础设施,让计算无处不在,主动地、按需地为人们提供服务。
3.4 RFID标签成本
RFID标签成本是其商业应用能否取得成功的关键。RFID标签的成本主要由IC芯片、天线和封装等几部分构成。根据ARC顾问集团调查,2003年被动式HF频段标签的平均价格为91美分,UHF频段标签的平均价格为57美分[9]。随着集成电路技术的进步和应用规模扩大,RFID标签的成本将不断降低。根据Auto-ID中心的预测,在大规模生产的情况下,RFID标签生产成本最低能降到5美分,其中IC芯片约1~2美分,天线约1 美分[10];ARC顾问集团预测,到2008年,被动式HF频段标签的平均价格将下降至30美分,UHF频段标签的平均价格将下降至16美分[9]。此外,RFID阅读器的成本也是影响RFID 应用的因素之一。由于RFID系统拥有巨大的技术优势,由此将带来工作效率的大幅提高,从而降低系统的总体拥有成本。
RFID系统应用推广还涉及到对现有业务系统的改造。当前企业大量采用的是条码技术、ERP、数据仓库等技术管理自己的生产和销售过程。如何降低把现有业务系统转变成以RFID为基础所需的成本也是当前RFID研究的一个重要课题。
4 结论
RFID将构建虚拟世界与物理世界的桥梁。可以预见,在不久的将来,RFID技术不仅会在各行各业被广泛采用,最终RFID技术将会与普适计算技术相融合,对人类社会产生深远影响。
作为全球的制造业基地,中国将是未来全球最大的RFID应用市场。这对于国内的科研机构和企业将是一次难得的机遇。目前,我国在RFID芯片、 RFID系统安全等核心技术方面的研究几乎还是空白,在RFID应用方面也还处于起步阶段。我们相信,在政府推动、企业参与的环境下,在庞大市场空间的吸引下,在中国会有越来越多的企业和研究机构参与RFID技术的研发和应用,会有更多的企业利用RFID技术进行企业信息化改造。中国将不仅主导RFID技术的应用市场,也应该成为RFID技术的全球研发中心。