数据库范式 相关复习

来源:百度文库 编辑:神马文学网 时间:2024/04/28 05:17:05
东西很多 要慢慢看。。大概整合了三篇文章
设计范式(范式,数据库设计范式,数据库的设计范式)是符合某一种级别的关系模式的集合。构造数据库必须遵循一定的规则。在关系数据库中,这种规则就是范式。关系数据库中的关系必须满足一定的要求,即满足不同的范式。目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、第四范式(4NF)、第五范式(5NF)和第六范式(6NF)。满足最低要求的范式是第一范式(1NF)。在第一范式的基础上进一步满足更多要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据库只需满足第三范式(3NF)就行了。下面我们举例介绍第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。
在创建一个数据库的过程中,范化是将其转化为一些表的过程,这种方法可以使从数据库得到的结果更加明确。这样可能使数据库产生重复数据,从而导致创建多余的表。范化是在识别数据库中的数据元素、关系,以及定义所需的表和各表中的项目这些初始工作之后的一个细化的过程。
下面是范化的一个例子
Customer   Item purchased    Purchase price
Thomas    Shirt        $40
Maria Tennis  shoes            $35
Evelyn    Shirt                                           $40
Pajaro      Trousers              $25
如果上面这个表用于保存物品的价格,而你想要删除其中的一个顾客,这时你就必须同时删除一个价格。范化就是要解决这个问题,你可以将这个表化为两个表,一个用于存储每个顾客和他所买物品的信息,另一个用于存储每件产品和其价格的信息,这样对其中一个表做添加或删除操作就不会影响另一个表。
关系数据库的几种设计范式介绍
1 第一范式(1NF)
在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。
所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。在第一范式(1NF)中表的每一行只包含一个实例的信息。例如,对于图3-2 中的员工信息表,不能将员工信息都放在一列中显示,也不能将其中的两列或多列在一列中显示;员工信息表的每一行只表示一个员工的信息,一个员工的信息在表中只出现一次。简而言之,第一范式就是无重复的列。
2 第二范式(2NF)
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被惟一地区分。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。如图3-2 员工信息表中加上了员工编号(emp_id)列,因为每个员工的员工编号是惟一的,因此每个员工可以被惟一区分。这个惟一属性列被称为主关键字或主键、主码。
第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。简而言之,第二范式就是非主属性必须依赖于整个主关键字。
3 第三范式(3NF)
满足第三范式(3NF)必须先满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在图3-2的员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性。
数据库设计三大范式应用实例剖析
数据库的设计范式是数据库设计所需要满足的规范,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update)操作异常。反之则是乱七八糟,不仅给数据库的编程人员制造麻烦,而且面目可憎,可能存储了大量不需要的冗余信息。
设计范式是不是很难懂呢?非也,大学教材上给我们一堆数学公式我们当然看不懂,也记不住。所以我们很多人就根本不按照范式来设计数据库。
实质上,设计范式用很形象、很简洁的话语就能说清楚,道明白。本文将对范式进行通俗地说明,并以笔者曾经设计的一个简单论坛的数据库为例来讲解怎样将这些范式应用于实际工程。
范式说明
第一范式(1NF):数据库表中的字段都是单一属性的,不可再分。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。
例如,如下的数据库表是符合第一范式的:
字段1 字段2 字段3 字段4
而这样的数据库表是不符合第一范式的:
字段1 字段2 字段3 字段4
字段3.1 字段3.2
很显然,在当前的任何关系数据库管理系统(DBMS)中,傻瓜也不可能做出不符合第一范式的数据库,因为这些DBMS不允许你把数据库表的一列再分成二列或多列。因此,你想在现有的DBMS中设计出不符合第一范式的数据库都是不可能的。
第二范式(2NF):数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况),也即所有非关键字段都完全依赖于任意一组候选关键字。
假定选课关系表为SelectCourse(学号, 姓名, 年龄, 课程名称, 成绩, 学分),关键字为组合关键字(学号, 课程名称),因为存在如下决定关系:
(学号, 课程名称) → (姓名, 年龄, 成绩, 学分)
这个数据库表不满足第二范式,因为存在如下决定关系:
(课程名称) → (学分)
(学号) → (姓名, 年龄)
即存在组合关键字中的字段决定非关键字的情况。
由于不符合2NF,这个选课关系表会存在如下问题:
(1) 数据冗余:
同一门课程由n个学生选修,"学分"就重复n-1次;同一个学生选修了m门课程,姓名和年龄就重复了m-1次。
(2) 更新异常:
若调整了某门课程的学分,数据表中所有行的"学分"值都要更新,否则会出现同一门课程学分不同的情况。
(3) 插入异常:
假设要开设一门新的课程,暂时还没有人选修。这样,由于还没有"学号"关键字,课程名称和学分也无法记录入数据库。
(4) 删除异常:
假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。但是,与此同时,课程名称和学分信息也被删除了。很显然,这也会导致插入异常。
把选课关系表SelectCourse改为如下三个表:
学生:Student(学号, 姓名, 年龄);
课程:Course(课程名称, 学分);
选课关系:SelectCourse(学号, 课程名称, 成绩)。
这样的数据库表是符合第二范式的, 消除了数据冗余、更新异常、插入异常和删除异常。
另外,所有单关键字的数据库表都符合第二范式,因为不可能存在组合关键字。
第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。所谓传递函数依赖,指的是如果存在"A → B → C"的决定关系,则C传递函数依赖于A。因此,满足第三范式的数据库表应该不存在如下依赖关系:
关键字段 → 非关键字段x → 非关键字段y
假定学生关系表为Student(学号, 姓名, 年龄, 所在学院, 学院地点, 学院电话),关键字为单一关键字"学号",因为存在如下决定关系:
(学号) → (姓名, 年龄, 所在学院, 学院地点, 学院电话)
这个数据库是符合2NF的,但是不符合3NF,因为存在如下决定关系:
(学号) → (所在学院) → (学院地点, 学院电话)
即存在非关键字段"学院地点"、"学院电话"对关键字段"学号"的传递函数依赖。
它也会存在数据冗余、更新异常、插入异常和删除异常的情况,读者可自行分析得知。
把学生关系表分为如下两个表:
学生:(学号, 姓名, 年龄, 所在学院);
学院:(学院, 地点, 电话)。
这样的数据库表是符合第三范式的,消除了数据冗余、更新异常、插入异常和删除异常。
鲍依斯-科得范式(BCNF):在第三范式的基础上,数据库表中如果不存在任何字段对任一候选关键字段的传递函数依赖则符合第三范式。
假设仓库管理关系表为StorehouseManage(仓库ID, 存储物品ID, 管理员ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。这个数据库表中存在如下决定关系:
(仓库ID, 存储物品ID) →(管理员ID, 数量)
(管理员ID, 存储物品ID) → (仓库ID, 数量)
所以,(仓库ID, 存储物品ID)和(管理员ID, 存储物品ID)都是StorehouseManage的候选关键字,表中的唯一非关键字段为数量,它是符合第三范式的。但是,由于存在如下决定关系:
(仓库ID) → (管理员ID)
(管理员ID) → (仓库ID)
即存在关键字段决定关键字段的情况,所以其不符合BCNF范式。它会出现如下异常情况:
(1) 删除异常:
当仓库被清空后,所有"存储物品ID"和"数量"信息被删除的同时,"仓库ID"和"管理员ID"信息也被删除了。
(2) 插入异常:
当仓库没有存储任何物品时,无法给仓库分配管理员。
(3) 更新异常:
如果仓库换了管理员,则表中所有行的管理员ID都要修改。
把仓库管理关系表分解为二个关系表:
仓库管理:StorehouseManage(仓库ID, 管理员ID);
仓库:Storehouse(仓库ID, 存储物品ID, 数量)。
这样的数据库表是符合BCNF范式的,消除了删除异常、插入异常和更新异常。
范式应用
我们来逐步搞定一个论坛的数据库,有如下信息:
(1) 用户:用户名,email,主页,电话,联系地址
(2) 帖子:发帖标题,发帖内容,回复标题,回复内容
第一次我们将数据库设计为仅仅存在表:
用户名 email 主页 电话 联系地址 发帖标题 发帖内容 回复标题 回复内容
这个数据库表符合第一范式,但是没有任何一组候选关键字能决定数据库表的整行,唯一的关键字段用户名也不能完全决定整个元组。我们需要增加"发帖ID"、"回复ID"字段,即将表修改为:
用户名 email 主页 电话 联系地址 发帖ID 发帖标题 发帖内容 回复ID 回复标题 回复内容
这样数据表中的关键字(用户名,发帖ID,回复ID)能决定整行:
(用户名,发帖ID,回复ID) → (email,主页,电话,联系地址,发帖标题,发帖内容,回复标题,回复内容)
但是,这样的设计不符合第二范式,因为存在如下决定关系:
(用户名) → (email,主页,电话,联系地址)
(发帖ID) → (发帖标题,发帖内容)
(回复ID) → (回复标题,回复内容)
即非关键字段部分函数依赖于候选关键字段,很明显,这个设计会导致大量的数据冗余和操作异常。
我们将数据库表分解为(带下划线的为关键字):
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:发帖ID,标题,内容
(3) 回复信息:回复ID,标题,内容
(4) 发贴:用户名,发帖ID
(5) 回复:发帖ID,回复ID
这样的设计是满足第1、2、3范式和BCNF范式要求的,但是这样的设计是不是最好的呢?
不一定。
观察可知,第4项"发帖"中的"用户名"和"发帖ID"之间是1:N的关系,因此我们可以把"发帖"合并到第2项的"帖子信息"中;第5项"回复"中的"发帖ID"和"回复ID"之间也是1:N的关系,因此我们可以把"回复"合并到第3项的"回复信息"中。这样可以一定量地减少数据冗余,新的设计为:
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:用户名,发帖ID,标题,内容
(3) 回复信息:发帖ID,回复ID,标题,内容
数据库表1显然满足所有范式的要求;
数据库表2中存在非关键字段"标题"、"内容"对关键字段"发帖ID"的部分函数依赖,即不满足第二范式的要求,但是这一设计并不会导致数据冗余和操作异常;
数据库表3中也存在非关键字段"标题"、"内容"对关键字段"回复ID"的部分函数依赖,也不满足第二范式的要求,但是与数据库表2相似,这一设计也不会导致数据冗余和操作异常。
由此可以看出,并不一定要强行满足范式的要求,对于1:N关系,当1的一边合并到N的那边后,N的那边就不再满足第二范式了,但是这种设计反而比较好!
对于M:N的关系,不能将M一边或N一边合并到另一边去,这样会导致不符合范式要求,同时导致操作异常和数据冗余。
对于1:1的关系,我们可以将左边的1或者右边的1合并到另一边去,设计导致不符合范式要求,但是并不会导致操作异常和数据冗余。
结论
满足范式要求的数据库设计是结构清晰的,同时可避免数据冗余和操作异常。这并意味着不符合范式要求的设计一定是错误的,在数据库表中存在1:1或1:N关系这种较特殊的情况下,合并导致的不符合范式要求反而是合理的。
理解数据库范式
系统是短暂的
数据是永恒的
数 据库范式是数据库设计中必不可少的知识,没有对范式的理解,就无法设计出高效率、优雅的数据库。甚至设计出错误的数据库。而想要理解并掌握范式却并不是那 么容易。教科书中一般以关系代数的方法来解释数据库范式。这样做虽然能够十分准确的表达数据库范式,但比较抽象,不太直观,不便于理解,更难以记忆。
本 文用较为直白的语言介绍范式,旨在便于理解和记忆,这样做可能会出现一些不精确的表述。但对于初学者应该是个不错的入门。我写下这些的目的主要是为了加强 记忆,其实我也比较菜,我希望当我对一些概念生疏的时候,回过头来看看自己写的笔记,可以快速地进入状态。如果你发现其中用错误,请指正。
下面开始进入正题:
一、基础概念
要理解范式,首先必须对知道什么是关系数据库,如果你不知道,我可以简单的不能再简单的说一下:关系数据库就是用二维表来保存数据。表和表之间可以……(省略10W字)。
然后你应该理解以下概念:
实体:现实世界中客观存在并可以被区别的事物。比如“一个学生”、“一本书”、“一门课”等等。值得强调的是这里所说的“事物”不仅仅是看得见摸得着的“东西”,它也可以是虚拟的,不如说“老师与学校的关系”。
属性:教科书上解释为:“实体所具有的某一特性”,由此可见,属性一开始是个逻辑概念,比如说,“性别”是“人”的一个属性。在关系数据库中,属性又是个物理概念,属性可以看作是“表的一列”。
元组:表中的一行就是一个元组。
分量:元组的某个属性值。在一个关系数据库中,它是一个操作原子,即关系数据库在做任何操作的时候,属性是“不可分的”。否则就不是关系数据库了。
码:表中可以唯一确定一个元组的某个属性(或者属性组),如果这样的码有不止一个,那么大家都叫候选码,我们从候选码中挑一个出来做老大,它就叫主码。
全码:如果一个码包含了所有的属性,这个码就是全码。
主属性:一个属性只要在任何一个候选码中出现过,这个属性就是主属性。
非主属性:与上面相反,没有在任何候选码中出现过,这个属性就是非主属性。
外码:一个属性(或属性组),它不是码,但是它别的表的码,它就是外码。
二、6个范式
好了,上面已经介绍了我们掌握范式所需要的全部基础概念,下面我们就来讲范式。首先要明白,范式的包含关系。一个数据库设计如果符合第二范式,一定也符合第一范式。如果符合第三范式,一定也符合第二范式…
第一范式(1NF):属性不可分。
在前面我们已经介绍了属性值的概念,我们说,它是“不可分的”。而第一范式要求属性也不可分。那么它和属性值不可分有什么区别呢?给一个例子:
name
tel
age
大宝
13612345678
22
小明
13988776655
010-1234567
21
Ps:这个表中,属性值“分”了。
name
tel
age
手机
座机
大宝
13612345678
021-9876543
22
小明
13988776655
010-1234567
21
Ps:这个表中,属性 “分”了。
这两种情况都不满足第一范式。不满足第一范式的数据库,不是关系数据库!所以,我们在任何关系数据库管理系统中,做不出这样的“表”来。
第二范式(2NF):符合1NF,并且,非主属性完全依赖于码。
听起来好像很神秘,其实真的没什么。
一 个候选码中的主属性也可能是好几个。如果一个主属性,它不能单独做为一个候选码,那么它也不能确定任何一个非主属性。给一个反例:我们考虑一个小学的教务 管理系统,学生上课指定一个老师,一本教材,一个教室,一个时间,大家都上课去吧,没有问题。那么数据库怎么设计?(学生上课表)
学生
课程
老师
老师职称
教材
教室
上课时间
小明
一年级语文(上)
大宝
副教授
《小学语文1》
101
14:30
一个学生上一门课,一定在特定某个教室。所以有(学生,课程)->教室
一个学生上一门课,一定是特定某个老师教。所以有(学生,课程)->老师
一个学生上一门课,他老师的职称可以确定。所以有(学生,课程)->老师职称
一个学生上一门课,一定是特定某个教材。所以有(学生,课程)->教材
一个学生上一门课,一定在特定时间。所以有(学生,课程)->上课时间
因此(学生,课程)是一个码。
然而,一个课程,一定指定了某个教材,一年级语文肯定用的是《小学语文1》,那么就有课程->教材。(学生,课程)是个码,课程却决定了教材,这就叫做不完全依赖,或者说部分依赖。出现这样的情况,就不满足第二范式!
有什么不好吗?你可以想想:
1、             校长要新增加一门课程叫“微积分”,教材是《大学数学》,怎么办?学生还没选课,而学生又是主属性,主属性不能空,课程怎么记录呢,教材记到哪呢? ……郁闷了吧?(插入异常)
2、             下学期没学生学一年级语文(上)了,学一年级语文(下)去了,那么表中将不存在一年级语文(上),也就没了《小学语文1》。这时候,校长问:一年级语文(上)用的什么教材啊?……郁闷了吧?(删除异常)
3、             校长说:一年级语文(上)换教材,换成《大学语文》。有10000个学生选了这么课,改动好大啊!改累死了……郁闷了吧?(修改异常)
那应该怎么解决呢?投影分解,将一个表分解成两个或若干个表
学生
课程
老师
老师职称
教室
上课时间
小明
一年级语文(上)
大宝
副教授
101
14:30
学生上课表新
课程
教材
一年级语文(上)
《小学语文1》
课程的表
第三范式(3NF):符合2NF,并且,消除传递依赖
上面的“学生上课表新”符合2NF,可以这样验证:两个主属性单独使用,不用确定其它四个非主属性的任何一个。但是它有传递依赖!
在哪呢?问题就出在“老师”和“老师职称”这里。一个老师一定能确定一个老师职称。
有什么问题吗?想想:
1、  老师升级了,变教授了,要改数据库,表中有N条,改了N次……(修改异常)
2、  没人选这个老师的课了,老师的职称也没了记录……(删除异常)
3、  新来一个老师,还没分配教什么课,他的职称记到哪?……(插入异常)
那应该怎么解决呢?和上面一样,投影分解:
学生
课程
老师
教室
上课时间
小明
一年级语文(上)
大宝
101
14:30
老师
老师职称
大宝
副教授
BC范式(BCNF):符合3NF,并且,主属性不依赖于主属性
若关系模式属于第一范式,且每个属性都不传递依赖于键码,则R属于BC范式。
通常BC范式的条件有多种等价的表述:每个非平凡依赖的左边必须包含键码;每个决定因素必须包含键码。
BC范式既检查非主属性,又检查主属性。当只检查非主属性时,就成了第三范式。满足BC范式的关系都必然满足第三范式。
还可以这么说:若一个关系达到了第三范式,并且它只有一个候选码,或者它的每个候选码都是单属性,则该关系自然达到BC范式。
一般,一个数据库设计符合3NF或BCNF就可以了。在BC范式以上还有第四范式、第五范式。
第四范式:要求把同一表内的多对多关系删除。
第五范式:从最终结构重新建立原始结构。
但在绝大多数应用中不需要设计到这种程度。并且,某些情况下,过于范式化甚至会对数据库的逻辑可读性和使用效率起到阻碍。数据库中一定程度的冗余并不一定是坏事情。如果你对第四范式、第五范式感兴趣可以看一看专业教材,从头学起,并且忘记我说的一切,以免对你产生误导。
关系模式的范式
主要有4种范式,1NF,2NF,3NF,BCNF,按从左至右的顺序一种比一种要求更严格。要符合某一种范式必须也满足它前边的所有范式。一般项目的数据库设计达到3NF就可以了,而且可根据具体情况适当增加冗余,不必教条地遵守所谓规范。
简单而言,1NF就是要求一张表里只放相互关联的字段,一个字段里只放一条信息,这只是最基本的要求。至于2NF,3NF,BCNF虽然描述的内容不同,但表现在数据特点上很相似,就好比在说不要为了向某厂订购一批货记下来,就把的厂的面积、电话等都放在同一张表里,而应该用两张表,以尽量避免浪费数据存储空间。因为和同一个厂可能会交易好几次,但没必要每次交易都记录全部的信息。
从范式所允许的函数依赖方面进行比较,四种范式之间的关联如下图所示。
以下对每种范式作一一说明。
2.3.4.2  第一范式
在关系模式R中的每一个具体关系r中,如果每个属性值 都是不可再分的最小数据单位,则称R是第一范式的关系。
例:如职工号,姓名,电话号码组成一个表(一个人可能有一个办公室电话 和一个家里电话号码) 规范成为1NF有三种方法:
一是重复存储职工号和姓名。这样,关键字只能是电话号码。
二是职工号为关键字,电话号码分为单位电话和住宅电话两个属性
三是职工号为关键字,但强制每条记录只能有一个电话号码。
以上三个方法,第一种方法最不可取,按实际情况选取后两种情况。
2.3.4.3  第二范式
关系的第二范式(2NF)定义: 如果关系模式R为1NF,并且R中的每一个非主属性都完全依赖于R的某个候选关键字,则称R是第二范式的,简记为2NF。
【例2.40】 设有关系模式R(学号S#,课程号C#,成绩G,任课教师TN,教师专长TS),基于R的函数依赖集F={(S#,C#)→G,C#→TN,TN→TS},判断R是否为2NF。
解:
(1) 容易看出,关系模式R是1NF。因为R符合关系的定义,R的所有属性值都是不可再分的原子值。
R是否为2NF,应根据2NF的定义来判断。
首先要确定关系模式R中各属性间的函数依赖情况。如果没有直接给出R的函数依赖集,就要按照语义把它确定下来。在本例中,已直接给出基于R的函数依赖集F,我们可使用阿氏推理规则并结合下面介绍的方法,进一步确定R中哪些是主属性、哪些是非主属性、侯选关键字由哪些属性构成。
方法①  写出函数依赖集F中的各个函数依赖以帮助分析。方法①的特点是直接。
F={(S#,C#)→G,
C#→TN,
TN→TS
}
方法②  用有向图表示属性间函数依赖,结点表示属性,方框包含若干个结点表示属性组合,有向箭头表示函数依赖。本例的函数依赖图如图2.9所示。方法②的特点是直观。
图2.9 函数依赖图例子
方法③  把关系模式R与函数依赖集F结合起来,属性组合用下划线(或上划线)表示,函数依赖用有向箭头表示。本例的函数依赖简图如图2.10所示。方法③的特点是简单。
图2.10函数依赖简图例子
用阿氏推理规则由F可推出:(S#,C#)→{S#,C#,G,TN,TS},即属性组合(S#,C#)是R的候选关键字(R只有这一个候选键)。(S#,C#)的一个值可惟一标识R中的一个元组(并且没有多余的属性)。
在R中,S#,C#是主属性;其余的属性G,TN,TS为非主属性。
借助上面的图,我们可以看到,非主属性G对键是完全依赖:(S#,C#)→G。但非主属性TN,TS对键是部分依赖(他们仅依赖于键的真子集C#)。由于R中存在非主属性对候选键的部分依赖,所以关系模式R不是2NF。
R中存在非主属性对候选键的部分依赖,将会引起数据冗余、数据操作异常等问题。可以把关系R无损联接地分解成两个2NF的关系模式:
ρ={R1,R2},R1={S#.C#,G},R2={C#,TN,TS}。
【例2.41】选课关系 SCI(SNO,CNO,GRADE,CREDIT)其中SNO为学号, CNO为课程号,GRADEGE 为成绩,CREDIT 为学分。
由以上条件,关键字为组合关键字(SNO,CNO)
在应用中使用以上关系模式有以下问题:
a.数据冗余,假设同一门课由40个学生选修,学分就 重复40次。
b.更新异常,若调整了某课程的学分,相应的元组CREDIT值都要更新,有可能会出现同一门课学分不同。
c.插入异常,如计划开新课,由于没人选修,没有学号关键字,只能等有人选修才能把课程和学分存入。
d.删除异常,若学生已经结业,从当前数据库删除选修记录,就会可能连课程号及学分完全从数据库中删除,则此门课程及学分记录无法保存。
原因:非关键字属性CREDIT仅函数依赖于CNO,也就是CREDIT部分依赖组合关键字(SNO,CNO)而不是完全依赖。
解决方法:分成两个关系模式 SC1(SNO,CNO,GRADE),C2(CNO,CREDIT)。新关系包括两个关系模式,它们之间通过SC1中的外关键字CNO相联系,需要时再进行自然联接,恢复了原来的关系
2.3.4.4  第三范式
关系的第三范式(3NF)定义: 如果关系模式R为2NF,并且R中的每一个非主属性都不传递依赖于R的某个候选关键字,则称R是第三范式的,简记为3NF。
【例2.42】续上例2.40(R(学号S#,课程号C#,成绩G,任课教师TN,教师专长TS)),判断关系模式R1={S#.C#,G},R2={C#,TN,TS} 是否为3NF。
解:
(1) 在关系模式R1={S#,C#,G},候选关键字是(S#,C#),主属性是S#,C#,非主属性是G,函数依赖为(S#,C#)→G。  由于R1中不存在非主属性对候选关键字的传递依赖,所以关系模式R1是3NF。
(2) 在关系模式R2={C#,TN,TS},候选关键字是C#,主属性是C#,非主属性是TN,TS,函数依赖为C#→TN,TN→TS。由于R2中存在非主属性对候选关键字的传递依赖C# TS,所以关系模式R2不是3NF。
可以把关系R2无损联接地分解成两个3NF的关系模式:
ρ={R3,R4},R3={C#,TN},R4={TN,TS}。
【例2.43】如(SNO,SNAME,DNO,DNAME,LOCATION) 各属性分别代表学号,
姓名,所在系,系名称,系地址。 判断关系模式S1是否为3NF。
关键字SNO决定各个属性。由于是单个关键字,没有部分依赖的问题,是2NF。
但这关系有大量的冗余,有关学生所在的几个属性DNO,DNAME,LOCATION将重复存储,插入,删除和修改时也将产生类似以上例的情况。
原因:关系中存在传递依赖造成的。关键字 SNO 对 LOCATION 函数决定是通过传递依赖:SNO -> DNO,及DNO -> LOCATION实现的。也就是说,SNO不直接决定非主属性LOCATION,不是3NF。
解决目地:每个关系模式中不能留有传递依赖。
解决方法:分为两个关系 S(SNO,SNAME,DNO),D(DNO,DNAME,LOCATION)
注意:关系S中不能没有外关键字DNO。否则两个关系之间失去联系。
2.3.4.5   Boyce-Codd范式
关系的Boyce-Codd范式(BCNF)定义: 如果关系模式R为1NF,并且R中的每一个函数依赖X→Y(YÏX),必有X是R的超关键字,则称R是Boyce-Codd范式的,简记为BCNF。
从BCNF的定义中,可以明显地得出如下结论:
(1) 所有非主属性对键是完全函数依赖;
(2) 所有主属性对不包含它的键是完全函数依赖;
(3)没有属性完全函数依赖于非键的任何属性组合。
与2NF,3NF的定义不同,BCNF的定义直接建立在1NF的基础上。但实质上BCNF是3NF的改进形式。3NF仅考虑了非主属性对键的依赖情况,BCNF把主属性对键的依赖情况也包括进去。BCNF要求满足的条件比3NF所要求的更高。如果关系模式R是BCNF的,那么R必定是3NF,反之,则不一定成立。
【例2.43】 续前例2.42(学号S#,课程号C#,成绩G,任课教师TN,教师专长TS),判断两个3NF关系模式R3={C#,TN},R4={TN,TS}是否为BCNF。
解:在关系模式R3中有函数依赖C#→TN,决定因素C#是R3的键;
在关系模式R4中有函数依赖TN→TS,决定因素TN是R4的键;
R3,R4都满足BCNF的定义,所以,这两个关系模式都是BCNF。
【例2.44】配件管理关系模式 WPE(WNO,PNO,ENO,QNT)分别表仓库号,配件号,职工号,数量。有以下条件
a.一个仓库有多个职工。
b.一个职工仅在一个仓库工作。
c.每个仓库里一种型号的配件由专人负责,但一个人可以管理几种配件。
d.同一种型号的配件可以分放在几个仓库中。
分析:由以上得 PNO 不能确定QNT,由组合属性(WNO,PNO)来决定,存在函数依赖(WNO,PNO) -> ENO。由于每个仓库里的一种配件由专人负责,而一个人可以管理几种配件,所以有组合属性(WNO,PNO)才能确定负责人,有(WNO,PNO)-> ENO。因为 一个职工仅在一个仓库工作,有ENO -> WNO。由于每个仓库里的一种配件由专人负责,而一个职工仅在一个仓库工作,有 (ENO,PNO)-> QNT。
找一下候选关键字,因为(WNO,PNO) -> QNT,(WNO,PNO)-> ENO ,因此 (WNO,PNO)可以决定整个元组,是一个候选关键字。根据ENO->WNO,(ENO,PNO)->QNT,故(ENO,PNO)也能决定整个元组,为另一个候选关键字。属性ENO,WNO,PNO 均为主属性,只有一个非主属性QNT。它对任何一个候选关键字都是完全函数依赖的,并且是直接依赖,所以该关系模式是3NF。
分析一下主属性。因为ENO->WNO,主属性ENO是WNO的决定因素,但是它本身不是关键字,只是组合关键字的一部分。这就造成主属性WNO对另外一个候选关键字(ENO,PNO)的部 分依赖,因为(ENO,PNO)-> ENO但反过来不成立,而P->WNO,故(ENO,PNO)-> WNO 也是传递依赖。
虽然没有非主属性对候选关键辽的传递依赖,但存在主属性对候选关键字的传递依赖,同样也会带来麻烦。如一个新职工分配到仓库工作,但暂时处于实习阶段,没有独立负责对某些配件的管理任务。由于缺少关键字的一部分PNO而无法插入到该关系中去。又如某个人改成不管配件了去负责安全,则在删除配件的同时该职工也会被删除。
解决办法:分成管理EP(ENO,PNO,QNT),关键字是(ENO,PNO)工作EW(ENO,WNO)其关键字是ENO
缺点:分解后函数依赖的保持性较差。如此例中,由于分解,函数依赖(WNO,PNO)-> ENO 丢失了, 因而对原来的语义有所破坏。没有体现出每个仓库里一种部件由专人负责。有可能出现 一部件由两个人或两个以上的人来同时管理。因此,分解之后的关系模式降低了部分完整性约束。