ARM linux系统调用的实现原理

来源:百度文库 编辑:神马文学网 时间:2024/04/28 15:23:05

大家都知道linux的应用程序要想访问内核必须使用系统调用从而实现从usr模式转到svc模式。下面咱们看看它的实现过程。

  系统调用是os操作系统提供的服务,用户程序通过各种系统调用,来引用内核提供的各种服务,系统调用的执行让用户程序陷入内核,该陷入动作由swi软中断完成。

  at91rm9200处理器对应的linux2.4.19内核系统调用对应的软中断定义如下:

#if defined(__thumb__)               //thumb模式
#define __syscall(name)             
  "push  {r7}nt"             
  "mov  r7, #" __sys1(__NR_##name) "nt"  
  "swi  0nt"               
  "pop  {r7}"
#else                       //arm模式
#define __syscall(name) "swit" __sys1(__NR_##name) "nt"
#endif
#define __sys2(x) #x
#define __sys1(x) __sys2(x)
#define __NR_SYSCALL_BASE  0x900000        //此为OS_NUMBER << 20运算值
#define __NR_open      (__NR_SYSCALL_BASE+ 5) //0x900005

  举一个例子来说:open系统调用,库函数最终会调用__syscall(open),宏展开之后为swi #__NR_open,即,swi #0x900005触发中断,

中断号0x900005存放在[lr,#-4]地址中,处理器跳转到arch/arm/kernel/entry-common.S中vector_swi读取[lr,#-4]地址中的中断号,之后查询arch/arm/kernel/entry-common.S中的sys_call_table系统调用表,该表内容在arch/arm/kernel/calls.S中定义,__NR_open在表中对应的顺序号为

__syscall_start:
...
.long  SYMBOL_NAME(sys_open)           //第5个
...
将sys_call_table[5]中内容传给pc,系统进入sys_open函数,处理实质的open动作

  注:用到的一些函数数据所在文件,如下所示

arch/arm/kernel/calls.S声明了系统调用函数
include/asm-arm/unistd.h定义了系统调用的调用号规则
vector_swi定义在arch/arm/kernel/entry-common.S
vector_IRQ定义在arch/arm/kernel/entry-armv.S
vector_FIQ定义在arch/arm/kernel/entry-armv.S
arch/arm/kernel/entry-common.S中对sys_call_table进行了定义:
  .type  sys_call_table, #object
ENTRY(sys_call_table)
#include "calls.S"                 //将calls.S中的内容顺序链接到这里

  源程序:

ENTRY(vector_swi)
  save_user_regs
  zero_fp
  get_scno                    //将[lr,#-4]中的中断号转储到scno(r7)
  arm710_bug_check scno, ip
#ifdef CONFIG_ALIGNMENT_TRAP
  ldr  ip, __cr_alignment
  ldr  ip, [ip]
  mcr  p15, 0, ip, c1, c0            @ update control register
#endif
  enable_irq ip
  str  r4, [sp, #-S_OFF]!            @ push fifth arg
  get_current_task tsk
  ldr  ip, [tsk, #TSK_PTRACE]          @ check for syscall tracing
  bic  scno, scno, #0xff000000         @ mask off SWI op-code
//#define OS_NUMBER  9[entry-header.S]
//所以对于上面示例中open系统调用号scno=0x900005
//eor scno,scno,#0x900000
//之后scno=0x05
  eor  scno, scno, #OS_NUMBER << 20       @ check OS number
//sys_call_table项为calls.S的内容
  adr  tbl, sys_call_table           @ load syscall table pointer
  tst  ip, #PT_TRACESYS             @ are we tracing syscalls?
  bne  __sys_trace
  adrsvc  al, lr, ret_fast_syscall       @ return address
  cmp  scno, #NR_syscalls            @ check upper syscall limit
//执行sys_open函数
  ldrcc  pc, [tbl, scno, lsl #2]        @ call sys_* routine
  add  r1, sp, #S_OFF
2: mov  why, #0                 @ no longer a real syscall
  cmp  scno, #ARMSWI_OFFSET
  eor  r0, scno, #OS_NUMBER << 20        @ put OS number back
  bcs  SYMBOL_NAME(arm_syscall)  
  b  SYMBOL_NAME(sys_ni_syscall)        @ not private func
  /*
   * This is the really slow path. We're going to be doing
   * context switches, and waiting for our parent to respond.
   */
__sys_trace:
  add  r1, sp, #S_OFF
  mov  r0, #0                  @ trace entry [IP = 0]
  bl  SYMBOL_NAME(syscall_trace)
/*
//2007-07-01 gliethttp [entry-header.S]
//Like adr, but force SVC mode (if required)
 .macro adrsvc, cond, reg, label
   adrcond reg, label
 .endm
//对应反汇编:
//add lr, pc, #16 ; lr = __sys_trace_return
*/
  adrsvc  al, lr, __sys_trace_return      @ return address
  add  r1, sp, #S_R0 + S_OFF          @ pointer to regs
  cmp  scno, #NR_syscalls            @ check upper syscall limit
  ldmccia  r1, {r0 - r3}            @ have to reload r0 - r3
  ldrcc  pc, [tbl, scno, lsl #2]        @ call sys_* routine
  b  2b
__sys_trace_return:
  str  r0, [sp, #S_R0 + S_OFF]!         @ save returned r0
  mov  r1, sp
  mov  r0, #1                  @ trace exit [IP = 1]
  bl  SYMBOL_NAME(syscall_trace)
  b  ret_disable_irq
  .align  5
#ifdef CONFIG_ALIGNMENT_TRAP
  .type  __cr_alignment, #object
__cr_alignment:
  .word  SYMBOL_NAME(cr_alignment)
#endif
  .type  sys_call_table, #object
ENTRY(sys_call_table)
#include "calls.S"