数字载波的链路预算(转载)

来源:百度文库 编辑:神马文学网 时间:2024/04/30 20:26:50
设计卫星通信线路时,通常先选定通信卫星和工作频段,根据卫星转发器的性能参数和用户需求,选择系统所用的天线口径、调制和编码方式,然后通过链路计算,验证所设计线路的可行性与合理性。合理的设计应保证系统略有余量,同时使系统所占用的转发器功率资源与带宽资源相平衡。如果链路预算结果表明,在功率与带宽相平衡时所得的系统余量过大或不足,可以改变天线口径,或调制、编码参数,对系统进行优化。
考虑到目前的话音、数据通信和电视广播的主流是数字化,这里只介绍数字载波的链路预算表。表中列举了几种不同类型的业务,它们共用一个36MHz带宽的C波段转发器。
计算载波带宽时,通常按下式先从被传输的信息速率、纠错码率和调制方式,求出符号速率。
符号速率 = (信息速率 / FEC编码率 / R-S编码率)* 调制因子
如果有报头的话,应将其计入信息速率中。前向纠错(FEC)编码率通常为1/2、2/3、3/4、5/6和7/8,Reed-Solomon编码率常用188/204。BPSK、QPSK、8PSK和16QAM的调制因子分别为1、1/2、1/3和1/4。
载波噪声带宽和占用带宽的取值应分别为符号速率的1.2倍和1.4倍。部分设备商强调其调制波的占用带宽可压缩到符号速率的1.35倍甚至1.3倍,但通常不被卫星操作者所接受。
在链路预算中,载波噪声带宽将被用于计算C/T、C/N和Eb/N0之间的关系,占用带宽将被用于决定载波工作频率,以及计算载波的输出和输入回退量。
通信转发器的功放级多采用行波管放大器(TWTA)或固态功率放大器(SSPA)。这两种放大器在最大输出功率点附近的输出/输入关系曲线为非线性。多载波工作于同一个转发器时,为了避免非线性放大器产生的交调干扰,必须 使使放大器工作在线性状态。这时,整个转发器的输出功率远低于最大功率。采用TWTA的转发器在线性工作状态时的输出功率,通常比最大功率低4.5dB。也就是说,整个转发器的输出线性回退约为4.5dB。
转发器的输入回退量可根据输出回退量,在放大器输出/输入关系曲线中查得。对于采用TWTA的转发器,输入回退量一般比输出回退大6dB上下。对应于4.5dB的输出线性回退,转发器的输入线性回退约为10.5dB。
在链路预算中,载波输出回退和输入回退将分别被用于计算载波的下行和上行EIRP。
功率和带宽同为转发器的重要资源。用户所能占用的转发器功率应与他向卫星公司租用的转发器带宽相平衡。在一般情况下,用户载波所占用的转发器功率与转发器总功率的比值,应该和用户租用带宽占转发器总带宽的比例大致相等。
载波功率的输出回退值与转发器线性回退之差值,即为载波占用转发器功率的比例。当载波在转发器中的功率占用率与带宽占用率相平衡时,
OBOC = OBOXpd + 10 lg (BWXpd / BWC)
式中,OBOC为载波的输出回退值,OBOXpd为转发器的线性输出回退值,BWXpd和BWC分别为转发器带宽和载波租用带宽。上式表明,转发器的线性 输出回退值越低,或者载波带宽越宽,载波所分配到的功率就越高;转发器带宽越宽,载波所分配到的功率就越低。
与上行EIRP
转发器的饱和通量密度SFD反映卫星信道的接收灵敏度。接收灵敏度越高,所要求的上行功率就越低。不过, 一味提高SFD并不是好事。因为降低上行功率的同时,也将相应降低上行载噪比和上行抗干扰能力。
值得一提的是,通过调整转发器信道单元中的可变衰耗器,可以改变SFD的数值。因此,在转发器参数表中,一般会注明SFD是某个衰减档的对应值。在取用SFD参数时,应 该根据参数表中的参考衰减档与转发器当前所用衰减档的差值,对参数表中的SFD数值加以修正。
上行载波的EIRP可按下式求得,
EIRPE = SFD - 载波输入回退 - G0 + 上行传输损耗
式中的G0为单位面积的标准天线增益。
载波的上行EIRP用于计算上行G/T与上行站的天线发送增益和功放输出功率。
C/T
C/T为载波功率与等效噪声温度之比,上行与下行C/T的计算公式均为,
C/T = EIRP - 传输损耗 + G/T
计算上行C/T时,上式中的EIRP为载波的上行EIRP,传输损耗为上行损耗,G/T为转发器参数 。计算下行C/T时,上式中的EIRP为载波的下行EIRP,传输损耗为下行损耗,G/T为地面接收系统的参数。
链路预算的对象也可以是C/N,它与C/T的关系为,
C/N = C/T - BWN - k
式中,BWN为载波噪声带宽,k为波兹曼常数。
在链路预算中,除了上行与下行的C/T或C/N外,通常还需考虑反极化干扰、邻星干扰和交调干扰等因素。这三项干扰因素的计算,因数据不足而很难得到准确的结果。由于它们对链路预算结果的影响很有限,为此,通常只采用简化的估算方法。
反极化干扰应考虑被干扰信号与反极化干扰信号的功率谱密度之比,以及地面天线和卫星收发天线的极化隔离度的综合影响。假设两个极化的转发器的工作状态相同,两个极化的载波都只占用转发器平均功率, 反极化干扰的载波干扰比C/I即可简化为天线极化隔离度的综合影响。
一般而言,在邻星干扰中,下行干扰起决定作用。邻星干扰的C/I大致由双方载波在接收站点的下行EIRP谱密度之比与接收天线的偏轴增益差 (地面天线指向所用卫星的最大接收增益与指向邻星的偏轴接收增益之差值)决定。
卫星操作者通常都要求用户为发送多载波的上行站功放预留足够的线性回退。因此,交调干扰可以只考虑由转发器引起的部分。交调干扰的C/I大致由转发器的线性回退量和相邻载波与被计算载波的功率谱密度之比决定。
链路预算需要综合考虑上行C/N与下行C/N、以及各种干扰所产生的C/I,最后求得相关载波链路的系统C/N。相关算式为
(C/N)Total-1 = (C/(N+I))Up-1 + (C/(N+I))Dn-1
= ((C/N)Up-1 + (C/I)XpdUp-1 + (C/I)AdjUp-1) + ((C/N)Dn-1 + (C/I)XpdDn-1 + (C/I)AdjDn-1 + (C/I)IM-1)
上式中,(C/(N+I))Up和(C/(N+I))Dn分别为上行和下行的载波与噪声干扰比,(C/I)XpdUp和(C/I)XpdDn分别为上行和下行的载波与反极化干扰比,(C/I)AdjUp和(C/I)AdjDn分别为上行和下行的载波与邻星干扰比,(C/I)IM为下行载波与交调干扰比。上式中,所有的原为对数形式的载波噪声比和载波干扰比,都需在换算为真数后,再进行倒数求和计算。由此得到的系统C/N,还得再次换算为常用的对数形式,单位为dB。
采用不同的调制和编码方式的数字载波,都对应有一个最低要求的Eb/N0值。通过换算,可以求得相关载波所需的最低C/N值。
载波链路的系统C/N估算值与载波所需的最低C/N值之差 ,为相关载波的系统余量。在不考虑降雨衰耗时,系统余量以1到2dB较为合适。余量太低时,系统工作将不够稳定;余量过高时,将增加不必要的设备成本。
上一节中,系统C/N也可通过综合上下行C/N与上下行C/I求得。算式可以相应变化为
(C/N)Total-1 = (C/N)Up&Dn-1 + (C/I)Up&Dn-1
= ((C/N)Up-1 + (C/N)Dn-1) + ((C/I)XpdUp-1 + (C/I)AdjUp-1 + (C/I)XpdDn-1 + (C/I)AdjDn-1 + (C/I)IM-1)
一般说来,载波噪声比(C/N)Up&Dn的估算结果较为准确,而载波干扰比(C/I)Up&Dn的估算结果较为粗糙。
实践中发现,当C频段的接收天线口径不小于3米时,(C/N)Up&Dn与(C/N)Total的差值通常为0.5到1dB;当Ku频段的接收天线口径不小于1.2米时,(C/N)Up&Dn与(C/N)Total的差值通常为1到2dB。为此,在上述接收天线口径条件下,可以省略本来就有些自欺欺人的载波干扰比估算。链路估算 时,可以只计算上下行链路的综合C/N,然后减去0.5到2dB的干扰因素。如此的链路估算结果,与各家卫星公司所算得的高低不同的结果相比,误差多半在1dB以内。
频段的雨衰备余和上行功率控制
上述链路预算表中,只计算晴空条件下的结果。用于C频段时,系统余量可为1.5dB,或略高。用于Ku频段时,还需考虑雨衰备余量。中国各地在99.9%可用度的雨衰量可参考Ku频段雨衰表。
对下行站而言,对付雨衰只能用预留备余量的消极办法。工作于Ku频段的上行站应尽可能采用上行功率控制,以抵消雨衰的影响。
转发器的主要参数 /
卫星转发器的三个主要参数为G/T、SFD与EIRP。G/T和SFD反映卫星接收系统在其服务区内的性能,它们与卫星接收天线的增益分布线性相关。EIRP反映转发器的下行功率,它与卫星发送天线的增益分布线性相关。
卫星天线增益随天线指向与工作频率而变。因此,转发器参数随服务区内的不同地点而变,同一地点的不同转发器参数也有差异。特定地点的转发器参数可从城市参数列表或等值线分布图中查到 。
G/T为接收系统的品质因数(figure of merit)。它是接收天线增益G与接收系统噪声温度T之比值,单位为dB/k。G/T的计算公式为
G/T = GR / TS
式中的GR为卫星天线的接收增益,TS为卫星接收系统的噪声温度。
饱和通量密度SFD为,当转发器被推到饱和工作点时,上行载波在接收天线口面所达到的通量密度。它反映卫星转发器对上行功率的需求量,单位为dBW/m2。SFD与G/T的关系为
SFD = constant + attn – G/T
式中的constant为反映转发器增益的计算常数,其数值多在-100与-90之间,constant越小,转发器的增益就越高;attn为转发器的增益调整量,它可由地面遥控改变,用于调整SFD的灵敏度。用户在作链路计算时,应向卫星公司了解相关转发器attn的当前设置值,并且据此对从图表查到的SFD数据作修正。
有效全向辐射功率EIRP为卫星转发器在指定方向上的辐射功率。它为天线增益与功放输出功率之对数和,单位为dBW。EIRP的计算公式为
EIRP = P – Loss + GT
式中的P为放大器的输出功率,Loss为功放输出端与天线馈源之间的馈线损耗,GT为卫星天线的发送增益。
由对比同一颗通信卫星的C频段EIRP分布图和Ku频段EIRP分布图可知,C频段转发器的服务区大,通常覆盖几乎所有的可见陆地,适用于远距离的国际或洲际业务;Ku频段转发器的服务区小,通常只覆盖一个大国或数个小国,只适用于国内业务。C频段转发器的EIRP通常为36到42dBW,G/T通常为-5到+1dB/k,地面天线的口径一般不小于1.8米;Ku频段转发器的EIRP通常为44到56dBW,G/T通常为-2到+8dB/k,地面天线口径有可能小于1米。另一方面,C频段因为电波传播通常不受气候条件的影响,适用于可靠性较高的业务;Ku频段转发器则因电波传播可能遭受降雨衰耗的影响,只适用于建网条件较差、天线尺寸和成本受限的业务。