最小二乘法

来源:百度文库 编辑:神马文学网 时间:2024/04/29 05:56:28

最小二乘法

科技名词定义

中文名称:
最小二乘法
英文名称:
least square method
定义:
在残差满足VPV为最小的条件下解算测量估值或参数估值并进行精度估算的方法。其中V为残差向量,P为其权矩阵。
所属学科:
测绘学(一级学科) ;大地测量学(二级学科)
本内容由全国科学技术名词审定委员会审定公布

百科名片

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

目录[隐藏]

最小二乘法公式
最小二乘法(least square)历史简介
最小二乘法公式
最小二乘法原理


  

[编辑本段]最小二乘法公式

  

[编辑本段]最小二乘法(least square)历史简介

  1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。  高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。  法国科学家勒让德于1806年独立发现“最小二乘法”。但因不为时人所知而默默无闻。  勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。  1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。(来自于wikipedia)

[编辑本段]最小二乘法公式

  最小二乘法公式   ∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平   ∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2

[编辑本段]最小二乘法原理

  用各个离差的平方和M=Σ(i=1到n)[yi-(axi+b)]^2最小来保证每个离差的绝对值都很小。解方程组?M/?a=0;?M/?b=0,整理得(Σxi^2)a+(Σxi)b=Σxiyi;(Σxi)a+nb=Σyi。解出a,b。  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中, 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。  Y计= a0 + a1 X (式1-1)  其中:a0、a1 是任意实数  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。  令: φ = ∑(Yi - Y计)2 (式1-2)  把(式1-1)代入(式1-2)中得:  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。  (式1-4)  (式1-5)  亦即:  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。