Methamphetamine Synthesis and manufacture guide!

来源:百度文库 编辑:神马文学网 时间:2024/04/27 19:19:48
Methamphetamine Synthesis Excerpt

Legal methamphetamine is sold under such trade names as Desoxyn, Methedrine, etc. It is closely related both in structure and effects to regular amphetamine, called benzedrine and dexedrine. The difference between methedrine and benzedrine is that meth is more potent and its effect lasts a longer time. Meth is a potent stimulant similar in effect to cocaine, but much longer lasting.
---------
The heart of the chemical laboratory is the set of glassware  collectively called "the kit." It consists of several round bottom flasks, a claisen adapter, a still head with thermometer holder, a thermometer, a condenser, a vacuum adapter and a separatory funnel (sep funnel, for short). These pieces each have ground glass joints of the same size, so that the set can be put together in a variety of ways, depending on the process being done. For the production of quarter to third of a pound batches, 24/40 size ground glass joints are used. Also necessary are one each of the following sizes of round bottom flasks: 3000 ml, 2000 ml and 500 ml; and two each of 1000 ml and 250 ml. Two condensers are also required, both of the straight central tube variety, one about 35 cm in length, the other about 50 cm in length.
---------
The rise in temperature of both the oil bath and the flask is   monitored. The contents of the flask are stirred regularly with the thermometer. The temperature of the oil bath is brought to 100 C over the course of about 45 minutes. Once it reaches this level, the heat is turned back down a little bit to stabilize it in this area. The chemist must closely control every degree of temperature increase from here on. The temperature of the contents of the flask is worked up to 105g C. The contents of the flask are stirred every 15 minutes. At about 1O7 C, the reaction kicks in, although sometimes the heat must go as high as 110g C before it starts. When the reaction starts, the contents of the flask begin to bubble, sort of like beer, except that a head does not develop. A trick to get this reaction going at a nice low temperature is to gently scrape the thermometer along the bottom of the flask. Although I have never had the sophisticated equipment to prove it, it is a pet theory of mine that this is because ultrasonic waves are generated, producing a condition of resonance with the reactants that causes the reaction to start.
The chemist wants to keep the temperature down at the same level at which the reaction first kicked in for as long as the reaction will continue at that level. Generally, it can go for a couple of hours at this level before the reaction dies down and an increase in temperature is necessary. The reaction mixture has the same color as beer and gently bubbles. The bubbles rise up from the bottom of the flask, come to the surface, and then head for where the thermometer breaks the surface. Here they collect to form bubbles about 1 centimeter in size before they break. This may look like boiling, but it is not. Everything inside the flask has a much higher boiling point than the temperatures being used. These are actually bubbles of carbon dioxide gas being formed as by-products of the reaction. The chemist can tell how well the reaction is going by the amount of bubbling going on.
_xyz