三极管的工作原理1

来源:百度文库 编辑:神马文学网 时间:2024/04/26 10:33:02
结构与操作原理
三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn
两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集
极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出
npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,
和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中
性的p型区和n型区隔开。

图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。
三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里
我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接
面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管
都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏
区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基
极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,
故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形
下,电洞和电子的电位能的分布图。
三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在
于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例,
射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极
方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时,
会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流
到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小
关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入
射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电
洞复合,即InB? E=IErec。pnp三极管在正向活性区时主要的电流种类可以清楚地
在图3(a)中看出。

图2 (a)一pnp三极管偏压在正向活性区;(b)没外加偏压,和偏压在正向
活性区两种情形下,电洞和电子的电位能的分布图比较。

图3 (a) pnp三极管在正向活性区时主要的电流种类;(b)电洞电位能分布及
注入的情形;(c)电子的电位能分布及注入的情形。
一般三极管设计时,射极的掺杂浓度较基极的高许多,如此由射极注入基极 的射极主要载体电洞(也就是基极的少数载体)IpE? B电流会比由基极注入射极 的载体电子电流InB? E大很多,三极管的效益比较高。图3(b)和(c)个别画出电洞 和电子的电位能分布及载体注入的情形。同时如果基极中性区的宽度WB愈窄, 电洞通过基极的时间愈短,被多数载体电子复合的机率愈低,到达集电极的有效电 洞流IpE? C愈大,基极必须提供的复合电子流也降低,三极管的效益也就愈高。 集电极的掺杂通常最低,如此可增大CB极的崩溃电压,并减小BC间反向偏压的 pn接面的反向饱和电流,这里我们忽略这个反向饱和电流。 由图4(a),我们可以把各种电流的关系写下来: 射极电流 基极电流 集电极电流