脱硫技术知识

来源:百度文库 编辑:神马文学网 时间:2024/03/29 08:40:51

脱硫技术

脱硫技术流程

目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。

目录[隐藏]

主要来源

燃料油中硫的主要存在形式及分布

生产低硫燃料油的方法

酸碱精制

生物脱硫技术

新型的脱硫技术

低硫化的负面影响

结论及建议

技术原理

主要来源

燃料油中硫的主要存在形式及分布

生产低硫燃料油的方法

生物脱硫技术

新型的脱硫技术

低硫化的负面影响

结论及建议

技术原理

主要来源

  近年来,随着机动车的增多,汽车尾气已成为主要的大气污染源,酸雨也因此更加频繁,严重危害到了建筑物、土壤和人类的生存环境。因此,世界各国纷纷提出了更高的油品质量标准,进一步限制油品中的硫含量、烯烃含量和苯含量,以更好地保护人类的生存空间。

  随着对含硫原油加工量的增加及重油催化裂化的普及,油品含硫量超标及安定性不好的现象也越来越严重。由于加氢脱硫在资金及氢源上的限制,对中小型炼油厂来说进行非加氢精制的研究具有重要的意义。本文简单介绍了非加氢脱硫技术进展及未来的发展趋势。

燃料油中硫的主要存在形式及分布

  原油中有数百种含硫烃,目前已验证并确定结构的就有200余种,这些含硫烃类在原油加工过程中不同程度地分布于各馏分油中。

  燃料油中的硫主要有两种存在形式:通常能与金属直接发生反应的硫化物称为“活性硫”,包括单质硫、硫化氢和硫醇;而不与金属直接发生反应的硫化物称为“非活性硫”,包括硫醚、二硫化物、噻吩等。对于汽油馏分而言,含硫烃类以硫醇、硫化物和单环噻吩为主,其主要来源于催化裂化(简称FCC)汽油。因此,要使汽油符合低硫汽油的指标必须对FCC汽油原料进行预处理或对FCC汽油产品进行后处理。而柴油馏分中的含硫烃类有硫醇、硫化物、噻吩、苯并噻吩和二苯并噻吩等,其中二苯并噻吩的4,6位烷基存在时,由于烷基的位阻作用而使脱硫非常困难,而且随着石油馏分沸点的升高,含硫化合物的结构也越来越复杂。

生产低硫燃料油的方法

酸碱精制

  酸碱精制是传统的方法,目前仍有部分炼厂使用。由于酸碱精制分离出的酸碱渣难以处理,而且油品损失较大,从长远来看,此技术必将遭到淘汰。

酸精制

  该法用一定浓度的硫酸、盐酸等无机酸从石油产品中除去硫醚和噻吩,从而达到脱硫的目的。反应如下所示:

  R2S+H2SO4 R2SH++HSO-4

碱精制

  NaOH水溶液可以抽提出部分酸性硫化物,在碱中加入亚砜、低级醇等极性溶剂或提高碱的浓度可以提高萃取效率。如用40%的NaOH可除去柴油中60%以上的硫醇及90%的苯硫酚,其中苯硫酚对油品的安定性影响很大。

催化法

  在酞菁催化剂法中,目前工业上应用较多是聚酞菁钴(CoPPC)和磺化酞菁钴(CoSPc)催化剂。此催化剂在碱性溶液中对油品进行处理,可以除去其中的硫醇。夏道宏认为聚酞菁钴(CoPPC)和磺化酞菁钴(CoSPc)在碱液中的溶解性不好,因而降低了催化剂的利用率,为此合成出了一种水溶性较好的新型催化剂——季铵磺化酞菁钴(CoQAHPc)n,该催化剂分子内有氧化中心和碱中心,二者产生的协同作用使该催化剂的活性得到了明显的提高[1]。此外,金属螯合剂法和酸性催化剂法都能使有机硫化物转化成硫化氢,从而有效的去除成品油中的硫化物[2]。

  以上这几种催化法脱硫效率虽然较高,但都存在着催化剂投资大、制备条件苛刻、催化活性组分易流失等缺点。目前炼厂使用此方法的其经济效益都不是很好,要想大规模的应用催化法脱硫技术,尚需克服一些技术上的问题。

溶剂萃取法

  选择适当的溶剂通过萃取法可以有效地脱除油品中的硫化物。一般而言,萃取法能有效地把油品中的硫醇萃取出来,再通过蒸馏的方法将萃取溶剂和硫醇进行分离,得到附加值较高的硫醇副产品,溶剂可循环使用。在萃取的过程中,常用的萃伞液是碱液,但有机硫化物在碱液和成品油中的分配系数并不高,为了提高萃取过程中的脱硫效率,可在碱液中添加少量的极性有机溶剂,如MDS、DMF、DMSOD等,这样可以大大提高萃取过程中的脱硫效率。夏道宏等人提出了MDS-H2O-KOH化学萃取法,用这三种萃取剂对FCC汽油进行了萃取率及回收率的实验,结果表明该方法在同一套装置中既能把油品中的硫醇萃取出来,还可以高效回收萃取液中的单一硫醇以及混合硫醇,得到高纯度的硫醇副产品,具有很高的经济效益和社会效益[3]。福建炼油化工公司把萃取和碱洗两种工艺结合起来,采用甲醇-碱洗复合溶剂萃取法显著提高了FCC柴油的储存安定性,萃取溶剂经蒸馏回收甲醇后可循环使用。此种方法投资低,脱硫效率高,具有较高的应用价值[4]。

催化吸附法

  催化吸附脱硫技术是使用吸附选择性较好且可再生的固体吸附剂,通过化学吸附的作用来降低油品中的硫含量。它是一种新出现的、能够有效脱除FCC汽油中硫化物的方法。与通常的汽油加氢脱硫相比,其投资成本和操作费用可以降低一半以上,且可以从油品中高效地脱除硫、氮、氧化物等杂质,脱硫率可达90%以上,非常适合国内炼油企业的现状。由于吸附脱硫并不影响汽油的辛烷值和收率,因此这种技术已经引起国内外的高度重视。

  Konyukhova[5]等把一些天然沸石(如丝光沸石、钙十字石、斜发沸石等)酸性活化后用于吸附油品中的乙基硫醇和二甲基硫,ZSM-5和NaX沸石则分别用于对硫醚和硫醇的吸附。Tsybulevskiy[5]研究了X或Y型分子筛进行改性后对油品的催化吸附性能。Wismann[5]考察了活性炭对油品的催化吸附性能。而在这些研究中普遍在着脱硫深度不够,吸附剂的硫容量较低,脱硫剂的使用周期短,且再生性能不好,因而大大限制了其工业应用。据报道,菲利浦石油公司开发的吸附脱硫技术于2001年应用于258 kt/a的装置,经处理后的汽油平均硫含量约为30 μg/g,是第一套采用吸附法脱除汽油中硫化物的工业装置,并准备将这一技术应用于柴油脱硫。

  国内的催化吸附脱硫技术尚处于研究阶段。徐志达、陈冰等[6]用聚丙烯腈基活性炭纤维(NACF)吸附油品中的硫醇,结果只能把油品中的一部分硫醇脱除。张晓静等[7]以13X分子筛为吸附剂对FCC汽油的全馏分和重馏分(>90℃)进行了研究,初步结果表明对硫含量为1220 μg/g的汽油的全馏分和重馏分进行精制后,与未精制的轻馏分(<90℃)混合可得到硫含量低于500 μg/g的汽油。张金岳等[8]对负载型活性炭催化吸附脱硫进行了深入的研究。

  总之,催化吸附脱硫技术在对油品没有影响的条件下能有效的脱除油品中的硫化物,且投资费用和操作费用远远低于其他(加氢精制、溶剂萃取,催化氧化等)脱硫技术。因此,研究催化吸附脱硫技术具有非常重要的意义。

络合法

用金属氯化物的DMF溶液来处理含硫油品时可使有机硫化物与金属氯化物之间的电子对相互作用,生成水溶性的络合物而加以除去。能与有机硫化物生成络合物的金属离子非常多,其中以CdCl2的效果最好。下面列举了不同金属氯化物与有机硫化物的络合反应活性顺序为:Cd2+>Co2+>Ni2+> Mn2+>Cr3+>Cu2+>Zn2+>Li+>Fe3+。由于络合法不能脱除油品中的酸性组分,因此在实际应用中经常采用络合萃取与碱洗精制相结合的办法,其脱硫效果非常显著,且所得油品的安定性好,具有较好的经济效益。

湿法脱硫技术

   我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。火电厂以煤作为主要燃料进行发电,煤直接燃烧释放出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加。加强 环境保护工作是我国实施可持续发展战略的重要保证。所以,加大火电厂SO2的控制力度 就显得非常紧迫和必要。SO2的控制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫 即烟气脱硫(FGD),目前湿法烟气脱硫被认为是最成熟、控制SO2最行之有效的途径。

湿法烟气脱硫技术

   所谓湿法烟气脱硫,特点是脱硫系统位于烟道的末端、除尘器之后,脱硫过程的反应温度低于露点,所以脱硫后的烟气需要再加热才能排出。由于是气液反应,其脱硫反应速度快、效率高、脱硫剂利用率高,如用石灰做脱硫剂时,当CaS=1时,即可达到90%的脱 硫率,适合大型燃煤电站的烟气脱硫。但是,湿法烟气脱硫存在废水处理问题,初投资大, 运行费用也较高。

石灰石/石灰抛弃法

   以石灰石或石灰的浆液作脱硫剂,在吸收塔内对SO2烟气喷淋洗涤,使烟气中的SO2反应生成CaCO3CaSO4,这个反应关键是Ca2+的形成。石灰石系统Ca2+的产生与H+的浓度和CaCO3的存在有关;而在石灰系统中,Ca2+的生产与CaO的存在有关。石灰石系统的最佳操作PH值为5.8—6.2,而石灰系统的最佳PH值约为8 美国国家环保局)。

   石灰石/石灰抛弃法的主要装置由脱硫剂的制备装置、吸收塔和脱硫后废弃物处理装 置组成。其关键性的设备是吸收塔。对于石灰石/石灰抛弃法,结垢与堵塞是最大问题,主要原因在于:溶液或浆液中的水分蒸发而使固体沉积:氢氧化钙或碳酸钙沉积或结晶析出;反应产物亚硫酸钙或硫酸钙的结晶析出等。所以吸收洗涤塔应具有持液量大、气液间相对速度高、气液接触面大、内部构件少、阻力小等特点。洗涤塔主要有固定填充式、转盘式、湍 流塔、文丘里洗涤塔和道尔型洗涤塔等,它们各有优缺点,脱硫效率高的往往操作的可靠性 最差。脱硫后固体废弃物的处理也是石灰石/石灰抛弃法的一个很大的问题,目前主要有回 填法和不渗透地存储法,都需要占用很大的土地面积。由于以上的缺点,石灰石/石灰抛弃 法已被石灰石/石膏法所取代。

石灰石/石膏法

   该技术与抛弃法的区别在于向吸收塔的浆液中鼓入空气,强制使CaSO3都氧化为CaSO4(石膏),脱硫的副产品为石膏。同时鼓入空气产生了更为均匀的浆液,易于达到90 %的脱硫率,并且易于控制结垢与堵塞。由于石灰石价格便宜,并易于运输与保存,因而自8 0年代以来石灰石已经成为石膏法的主要脱硫剂。当今国内外选择火电厂烟气脱硫设备时,石灰石/石膏强制氧化系统成为优先选择的湿法烟气脱硫工艺。

   石灰石/石膏法的主要优点是:适用的煤种范围广、脱硫效率高(有的装置Ca/S=1 ,脱硫效率大于90%)、吸收剂利用率高(可大于90%)、设备运转率高(可达90%以上) 、工作的可靠性高(目前最成熟的烟气脱硫工艺)、脱硫剂石灰石来源丰富且廉价。但是 石灰石/石膏法的缺点也是比较明显的:初期投资费用太高、运行费用高、占地面积大、 系统管理操作复杂、磨损腐蚀现象较为严重、副产物石膏很难处理(由于销路问题只能 堆放)、废水较难处理。

   采用石灰石/石膏法的烟气脱硫工艺在我国应用较广泛,比较典型的是重庆珞璜电厂 。该厂2×360MW机组1990年引进日本三菱公司的两套石灰石/石膏法FGD系统,93年全部建 成投运。其脱硫工艺主要技术参数为:脱硫效率大于95%,进口烟气SO2浓度10010mg/Nm3,石灰石年消耗量约130kt,副产品石膏纯度不低于90%,年产量约400kt,目前只有少量出售,大部分堆放在灰场。

   石灰石/石膏脱硫工艺是一套非常完善的系统,它包括烟气换热系统、吸收塔脱硫系 统、脱硫剂浆液制备系统、石膏脱水系统和废水处理系统。系统非常完善和相对复杂也是湿 法脱硫工艺一次性投资相对较高的原因,上述脱硫系统的四个大的分系统,只有吸收塔脱硫系统和脱硫剂浆液制备系统是脱硫必不可少的;而烟气换热系统、石膏脱水系统和废水处理系统则可根据各个工程的具体情况简化或取消。国外也有类似的实践,对于不需要回收石膏副产品的电厂,石膏脱水系统和废水处理系统可以不设,直接将石膏浆液打入堆储场地。湿法脱硫工艺简化能使其投资不同程度地降低。根据初步测算,湿法脱硫工艺简化以后,投资最大幅度可降低50%左右,绝对投资可降至简易脱硫工艺的水平,并可进一步提高湿法脱硫工艺的综合经济效益。

   液柱喷射烟气脱硫除尘集成技术是清华大学独立开发的烟气湿法脱硫新技术,是清华 大学煤的清洁燃烧国家重点实验室十几年科研成果的结晶。该技术具有如下特点:脱硫 效率高;初投资成本低;运行费用低;系统阻力低;脱硫产物为石膏,易于处理;脱硫剂适 应性好;燃煤含硫量适应性好。

   液柱喷射烟气脱硫除尘集成系统主要由脱硫反应塔、脱硫剂制备系统、脱硫剂产物处 理系统、控制系统和烟道系统组成,其中液柱喷射脱硫反应塔(也可以利用水膜除尘器改造 )其核心装置。如下图所示,烟气从脱硫反应塔的下部切向进入,在反应塔内上升的过程中 与脱硫剂循环液相接触,烟气中SO2与脱硫剂发生反应,将SO2除去,纯净烟气从反应塔顶部排出。脱硫剂循环液由布置在脱硫反应塔下部的喷嘴向上喷射,在上部散开,落下,在这喷上落下的过程中,形成高效率的气液接触而促进了烟气中的SO2的去除,同时进一步提高除尘效率。

   液柱喷射烟气脱硫装置的费用大约占电厂总投资的6%。其所能达到的技术经济指标是:脱硫率达85%以上,脱硫剂的利用率90%以上,除尘效率达95%以上;运行成本低,脱 硫成本约0.45/公斤二氧化硫。脱硫产物主要是CaSO4,可以用作建筑材料和盐碱地的 改造。该技术适用范围很广,适用于各种规模的烟气量,各种燃煤锅炉从35t/h300MW都能适用,而且对煤的适应性很好,高、中、低硫煤都能适用。该技术还非常适用于老厂的改造 。目前已用于沈阳化肥总厂三台10t/h锅炉的脱硫,三台10t/h锅炉共用一个脱硫反应塔, 其烟气量为4×104Nm3/h,煤含硫量为1.7%。

湿法烟气脱硫存在的问题及解决

  湿法烟气脱硫通常存在富液难以处理、沉淀、结垢及堵塞、腐蚀及磨损等
等棘手的问题。这些问题如解决的不好,便会造成二次污染、运转效率低下或不能运行等。

  1)富液的处理

用于烟气脱硫的化学吸收操作,不仅要达到脱硫的要求,满足国家及地区
环境法规的要求,还必须对洗后 SO2的富液(含有烟尘、硫酸盐、亚硫酸盐
等废液)进行合理的处理,既要不浪费资源,又要不造成二次污染。合理处理
废液,往往是湿法烟气脱硫烟气脱硫技术成败的关键因素之一。因此,吸收法
烟气脱硫工艺过程设计,需要同时考虑SO2吸收及富液合理的处理。所谓富液
合理处理,是指不能把碱液从烟气中吸收SO2形成的硫酸盐及亚硫酸盐废液未
经处理排放掉,否则会造成二次污染。回收和利用富液中的硫酸盐类,废物资
源化,才是合理的处理技术。例如,日本湿法石灰石/石灰——石膏法烟气脱
硫,成功地将富液中的硫酸盐类转化成优良的建筑材料——石膏。威尔曼洛德
钠法烟气脱硫,把富液中的硫酸盐类转化成高浓度高纯度的液体SO2,可作为
生产硫酸的原料。亚硫酸钠法烟气脱硫,将富液中的硫酸盐转化成为亚硫酸钠
盐。上述这些湿法烟气脱硫技术,对吸收SO2后的富液都进行了妥善处理,既
节省了资源,又不造成二次污染,不会污染水体。

2)烟气的预处理

含有SO2的烟气,一般都含有一定量的烟尘。在吸收SO2之前,若能专门
设置高效除尘器,如电除尘器和湿法除尘器等,除去烟尘,那是最为理想的。
然而,这样可能造成工艺过程复杂,设备投资和运行费用过高,在经济上是不
太经济的。若能在SO2吸收时,考虑在净化SO2的过程中同时除去烟尘,那是
比较经济的,是较为理想的,即除尘脱硫一机多用或除尘脱硫一体化。例如,
有的采取在吸收塔前增设预洗涤塔、有的增设文丘里洗涤器。这样,可使高温
烟气得到冷却,通常可将120~180℃的高温烟气冷却到80℃左右,并使烟
气增湿,有利于提高SO2的吸收效率,又起到了除尘作用,除尘效率通常为
95%左右。有的将预洗涤塔和吸收塔合为一体,下段为预洗涤段,上段为吸收
段。喷雾干燥法烟气脱硫技术更为科学,含硫烟气中的烟尘,对喷雾干燥塔无
任何影响,生成的硫酸盐干粉末和烟尘一同被袋滤器捕集,不用增设预除尘设
备,是比较经济的

3)烟气的预冷却

大多数含硫烟气的温度为120~185℃或更高,而吸收操作则要求在较低的
温度下(60℃左右)进行。低温有利于吸收,高温有利于解吸。因而在进行
吸收之前要对烟气进行预冷却。通常,将烟气冷却到60℃左右较为适宜。常用
冷却烟气的方法有:应用热交换器间接冷却;应用直接增湿(直接喷淋水)冷
却;用预洗涤塔除尘增湿降温,这些都是较好的方法,也是目前使用较广泛的
方法。通常,国外湿法烟气脱硫的效率较高,其原因之一就是对高温烟气进行
增湿降温。

我国目前已开发的湿法烟气脱硫技术,尤其是燃煤工业锅炉及窑炉烟气脱
硫技术,高温烟气未经增湿降温直接进行吸收操作,较高的吸收操作温度,使
SO2的吸收效率降低,这就是目前我国燃煤工业锅炉湿法烟气脱硫效率较低的  主要原因之一。

4)结垢和堵塞

在湿法烟气脱硫中,设备常常发生结垢和堵塞。设备结垢和堵塞,已成为一
些吸收设备能否正常长期运行的关键问题。为此,首先要弄清楚结构的机理,
影响结构和造成堵塞的因素,然后有针对性地从工艺设计、设备结构、操作控
制等方面着手解决。

一些常见的防止结垢和堵塞的方法有:在工艺操作上,控制吸收液中水份蒸
发速度和蒸发量;控制溶液的PH值;控制溶液中易于结晶的物质不要过饱
和;保持溶液有一定的晶种;严格除尘,控制烟气进入吸收系统所带入的烟
尘量,设备结构要作特殊设计,或选用不易结垢和堵塞的吸收设备,例如流
动床洗涤塔比固定填充洗涤塔不易结垢和堵塞;选择表面光滑、不易腐蚀的

材料制作吸收设备。

脱硫系统的结构和堵塞,可造成吸收塔、氧化槽、管道、喷嘴、除雾器设
置热交换器结垢和堵塞。其原因是烟气中的氧气将CaSO3氧化成为CaSO4
石膏),并使石膏过饱和。这种现象主要发生在自然氧化的湿法系统中,控制
措施为强制氧化和抑制氧化。

5)腐蚀及磨损

煤炭燃烧时除生成SO2以外,还生成少量的SO3,烟气中SO3的浓度为
10~40ppm。由于烟气中含有水(4%~12%),生成的SO3瞬间内形成硫
酸雾。当温度较低时,硫酸雾凝结成硫酸附着在设备的内壁上,或溶解于洗涤
液中。这就是湿法吸收塔及有关设备腐蚀相当严重的主要原因。解决方法主要
有:采用耐腐蚀材料制作吸收塔,如采用不锈钢、环氧玻璃钢、硬聚氯乙烯、
陶瓷等.

6)除雾

湿法吸收塔在运行过程中,易产生粒径为10~60m的“雾”。“雾”不仅含
有水分,它还溶有硫酸、硫酸盐、SO2等,如不妥善解决,任何进入烟囱的
“雾”,实际就是把SO2排放到大气中,同时也造成引风机的严重腐蚀。因此,
工艺上对吸收设备提出除雾的要求。被净化的气体在离开吸收塔之前要进行除
雾。通常,除雾器多设在吸收塔的顶部。

目前,我国相当一部分吸收塔尚未设置除雾器,这不仅造成SO2的二次
污染,对引风机的腐蚀也相当严重

7)净化后气体再加热

在处理高温含硫烟气的湿法烟气脱硫中,烟气在脱硫塔内被冷却、增湿
和降温,烟气的温度降至60℃左右。将60℃左右的净化气体排入大气后,在
一定的气象条件下将会产生“白烟”。由于烟气温度低,使烟气的抬升作用降
低。特别是在净化处理大量的烟气和某些不利的气象条件下,“白烟”没有远
距离扩散和充分稀释之前就已降落到污染源周边的地面,容易出现高浓度的
SO2污染。为此,需要对洗涤净化后的烟气进行二次再加热,提高净化气体的
温度。被净化的气体,通常被加热到105~130℃。为此,要增设燃烧炉。燃烧
炉燃烧天然气或轻柴油,产生1000~1100℃的高温燃烧气体,再与净化后的
气体混对。这里应当指出,不管采用何种方法对净化气体进行二次加热,在将
净化气体的温度加热到105~130℃的同时,都不能降低烟气的净化效率,其中
包括除尘效率和脱硫效率。为此,对净化气体二次加热的方法,应权衡得失后
进行选择。

 

4.烟气脱硫方法比较与选择

   1列出了几种工艺成熟、应用较广的烟气脱硫方法,并进行了经济性能比较。表2列出了我国引进的FGD装置的情况。

   无论何种脱硫工艺,其环境效益是明显的,但在经济效益是亏损的。许多脱硫方法都能获得较高的脱硫效益,但脱硫效率的高低并不是评价脱硫方法优劣的唯一标准,除了看脱硫效率外,还要看该方法的综合技术经济情况。总的来说,要从以下几个方面进行考虑:脱硫效率首先要满足环保要求;选择技术成熟,运行可靠的工艺;选择投资省,运行费用低的工艺;要考虑废料的处置和二次污染问题;吸收剂要有稳定的来源,并且质优价廉,这是一个 非常重要的影响因素。相对而言,我国石灰石资源比较丰富,纯度高,分布广,而高纯度石 膏的供应就很困难;副产品处置要有场地,综合利用要有市场;燃用煤种的含硫量也是影响 脱硫技术选择的重要因素,必须根据燃煤含硫量来选择恰当的脱硫方法。

1几种FDG工艺经济性能比较

工艺流程

湿式石灰石-石膏法

喷雾干燥法

LIFAC

CDSI

适用煤种含硫量(%)

1.5

1-3

2

2

Ca/S

1.1

1.5

2.0

1.5

钙的利用率(%)

90

40-45

35-40

4-45

脱硫成效(%)

90

80-85

70-75

60-70

投资占电厂投资比例(%)

13-19

8-12

3-5

 2-4

脱硫费用(/tSO2脱除)

900-1250

750-1050

600-900

600-800

设备占地面积

极小

灰渣状态

湿

烟气再热

无需

无需

无需

2我国引进FGD装置情况

引进单位

工艺流程

规模

脱 硫 剂

效率(%)

运行时间

技术提供方

烟气量

锅炉

重庆珞璜电厂

湿石灰石—石膏法

1087000

 

石灰石浆 

95

1992 1993

日本三菱公司

山东德州电厂

荷电干吸收剂喷射法

 

75t/h

Ca(OH)2

60—70

1995

美国ALANCO公司

太原发电厂

小型高速平流式

600000

 

石灰石

80

1996

日本日立公司

南京下关电厂

炉内喷钙增湿活化法

795000

 

石灰石

75

1997

 芬兰IVO公司

成都热电厂

电子束法

300000

 

NH3 

80

 1997

日本荏原制作所

 

生物脱硫技术

  生物脱硫,又称生物催化脱硫(简称BDS),是一种在常温常压下利用需氧、厌氧菌除去石油含硫杂环化合物中结合硫的一种新技术。早在1948年美国就有了生物脱硫的专利,但一直没有成功脱除烃类硫化物的实例,其主要原因是不能有效的控制细菌的作用。此后有几个成功的“微生物脱硫”报道,但却没有多少应用价值,原因在于微生物尽管脱去了油中的硫,但同时也消耗了油中的许多炭而减少了油中的许多放热量[9]。科学工作者一直对其进行了深入的研究,直到1998年美国的Institute of Gas Technology(IGT)的研究人员成功的分离了两种特殊的菌株,这两种菌株可以有选择性的脱除二苯并噻吩中的硫,去除油品中杂环硫分子的工业化模型相继产生,1992年在美国分别申请了两项专利(5002888和5104801)。美国Energy BioSystems Corp (EBC)公司获得了这两种菌株的使用权,在此基础上,该公司不仅成功地生产和再生了生物脱硫催化剂,并在降低催化剂生产成本的同时也延长了催化剂的使用寿命。此外该公司又分离得到了玫鸿球菌的细菌,该细菌能够使C-S键断裂,实现了脱硫过程中不损失油品烃类的目的[10]。现在,EBC公司已成为世界上对生物脱硫技术研究最广泛的公司。此外,日本工业技术研究院生命工程工业技术研究所与石油产业活化中心联合开发出了柴油脱硫的新菌种,此菌种可以同时脱除柴油中的二苯并噻吩和苯并噻吩中的硫,而这两种硫化物中的硫是用其它方法难以脱除的[11]。

  BDS过程是以自然界产生的有氧细菌与有机硫化物发生氧化反应,选择性氧化使C-S键断裂,将硫原子氧化成硫酸盐或亚硫酸盐转入水相,而DBT的骨架结构氧化成羟基联苯留在油相,从而达到脱除硫化物的目的。BDS技术从出现至今已发展了几十年,目前为止仍处于开发研究阶段。由于BDS技术有许多优点,它可以与已有的HDS装置有机组合,不仅可以大幅度地降低生产成本,而且由于有机硫产品的附加值较高,BDS比HDS在经济上有更强的竞争力。同时BDS还可以与催化吸附脱硫组合,是实现对燃料油深度脱硫的有效方法。因此BDS技术具有广阔的应用前景,预计在2010年左右将有工业化装置出现。

新型的脱硫技术

氧化脱硫技术

  氧化脱硫技术是用氧化剂将噻吩类硫化物氧化成亚砜和砜,再用溶剂抽提的方法将亚砜和砜从油品中脱除,氧化剂经过再生后循环使用。目前的低硫柴油都是通过加氢技术生产的,由于柴油中的二甲基二苯并噻吩结构稳定不易加氢脱硫,为了使油品中的硫含量降到10 μg/g,需要更高的反应压力和更低的空速,这无疑增加了加氢技术的投资费用和生产成本。而氧化脱硫技术不仅可以满足对柴油馏分10 μg/g的要求,还可以再分销网点设置简便可行的脱硫装置,是满足最终销售油品质量的较好途径。

ASR-2氧化脱硫技术

  ASR-2[12]氧化脱硫技术是由Unipure公司开发的一种新型脱硫技术,此技术具有投资和操作费用低、操作条件缓和、不需要氢源、能耗低、无污染排放、能生产超低硫柴油、装置建设灵活等优点,为炼油厂和分销网点提供了一个经济、可靠的满足油品硫含量要求的方法。

  在实验过程中,此技术能把柴油中的硫含量由7000 μg/g最终降到5 μg/g。此外该技术还可以用来生产超低硫柴油,来作为油品的调和组分,以满足油品加工和销售市场的需要。目前ASR-2技术正在进行中试和工业实验的设计工作。其工艺流程如下:含硫柴油与氧化剂及催化剂的水相在反应器内混合,在接近常压和缓和的温度下将噻吩类含硫化合物氧化成砜;然后将含有待生催化剂和砜的水相与油相分离后送至再生部分,除去砜并再生催化剂;含有砜的油相送至萃取系统,实现砜和油相分离;由水相和油相得到的砜一起送到处理系统,来生产高附加值的化工产品。

  尽管ASR-2脱硫技术已进行了多年的研究,但一直没有得到工业应用,主要是由于催化剂的再生循环、氧化物的脱除等一些技术问题还没有解决。ASR-2技术可以使柴油产品的硫含量达到5 μg/g,与加氢处理技术柴油产品的硫含量分别为30 μg/g和15 μg/g时相比,硫含量和总处理费用要少的多。因此,如果一些技术性问题能够很好地解决,那么ASR-2氧化脱硫技术将具有十分广阔的市场前景。

超声波氧化脱硫技术

  超声波氧化脱硫 (SulphCo)[13]技术是由USC和SulphCo公司联合开发的新型脱硫技术。此技术的化学原理与ASR-2技术基本相同,不同之处是SulphCo技术采用了超声波反应器,强化了反应过程,使脱硫效果更加理想。其流程描述为:原料与含有氧化剂和催化剂的水相在反应器内混合,在超声波的作用下,小气泡迅速的产生和破灭,从而使油相与水相剧烈混合,在短时间内超声波还可以使混合物料内的局部温度和压力迅速升高,且在混合物料内产生过氧化氢,参与硫化物的反应;经溶剂萃取脱除砜和硫酸盐,溶剂再生后循环使用,砜和硫酸盐可以生产其他化工产品。

  SulphCo在完成实验室工作后,又进行了中试放大实验,取得了令人满意的效果,即不同硫含量的柴油经过氧化脱硫技术后硫含量均能降低到10 μg/g以下。目前Bechtel公司正在着手SulphCo技术的工业试验。

光、等离子体脱硫技术

  日本污染和资源国家研究院、德国Tubingen大学等单位研究用紫外光照射及等离子体技术脱硫。其机理是:二硫化物是通过S-S键断裂形成自由基,硫醚和硫醇分别是C-S和S-H键断裂形成自由基,并按下列方式进行反应:

  无氧化剂条件下的反应:

  CH3S- + -CH3 CH4+CH2 ==== S

  CH3S- + CH3CH2R CH3SH+CH2 ==== SCH2R

  CH3S- + CH3S- CH3SSCH3

  CH3S- + CH2 ==== S CH3SCH2S- -CH3 CH3SCH2SCH3

  有氧化剂条件下的反应:

  CH3S- + O2 CH3SOO- RH CH3SOOH + R-

  SO3+ -CH3

  CH3SOOH Rr CH3SO- + -OH

  CH3SO- + RH CH3SOH + R-

  3CH3SOOH CH3SOOSCH3 + CH3SO3H

  此技术以各类有机硫化物和含粗汽油为对象,根据不同的分子结构,通过以上几种方式进行反应,产物有烷烃、烯烃、芳烃以及硫化物或元素硫,其脱硫率可达20%~80%。若在照射的同时通入空气,可使脱硫率提高到60%~100%,并将硫转化成SO3、SO2或硫磺,水洗即可除去。

低硫化的负面影响

  汽油和柴油的低硫化大大减轻了环境污染,特别是各国对燃料油低硫化政策已达成共识。但是在燃料油低硫化的进程中,出现了人们未曾预料到的负面效应,主要表现为:

(1)润滑性能下降,设备的磨损加大

  1991年,瑞典在使用硫含量为0.00%的柴油时,发现燃料泵产生的烧结和磨损甚至比普通柴油的磨损还要严重。日本也对不同硫含量的柴油作了台架试验,结果也确认了柴油润滑性能下降的问题。其主要原因是在脱硫的同时把存在于油品中具有润滑性能的天然极性化合物也脱除了,从而导致润滑性能下降,设备的磨损加大。

(2)柴油安定性变差,油品色相恶化

  当柴油的硫含量降到0.05%以下时,过氧化物的增加会加速胶状物和沉淀物的生成,影响设备的正常运转,并导致排气恶化。其主要原因是由于原本存在于柴油中的天然抗氧化组分在脱硫时也被脱除掉了。同时随着柴油中硫含量的降低,油品的颜色变深,给人以恶感。

结论及建议

  鉴于石油产品在生产和生活中的广泛应用,脱除其中危害性的硫是非常重要的。目前工业上使用的非加氢脱硫方法有酸碱精制、溶剂萃取和吸附脱硫,而这几种脱硫方法都存在着缺陷和不足。其中酸碱精制有大量的废酸废碱液产生,会造成严重的环境污染;溶剂萃取脱硫过程能耗大,油品收率低;吸附法中吸附剂的吸附量小,且需经常再生。其它的非加氢脱硫技术还处在试验阶段,其中生物脱硫、氧化脱硫和光及等离子体脱硫的应用前景十分诱人,可能是实现未来清洁燃料油生产的有效方法。由于降低燃料油中的硫含量、减少大气污染是一个复杂的过程,因此实施时应考虑各种因素,提高技术的可靠性,以取得最佳的经济效益和环保效益。

  石灰(石)— 石膏工艺湿法脱硫技术

  石灰(石)——石膏FGD是目前国内市场的主流脱硫技术,其核心技术已经为国内多数公司成功运用。

技术原理

  1. SO2和SO3的吸收 SO2十H2O→H++HSO3- SO3十H2O→H2SO4 SO2和SO3吸收的关键是提高其他水中的溶解度,PH值越高,水的表面积越大,气相湍流度越高,SO2和SO3的溶解量越大。 2. 与石灰石浆液反应 CaCO3十2H++HSO3-→Ca2+十HSO3-+H2O十CO2 CaCO3十H2SO4 → CaSO4+H2O十CO2 CaCO3 +2HCl→CaCl2+H2O十CO2 本步骤的关键是提高CaCO3的溶解度,PH值越低,溶解度越大。系统组成 ——烟气系统 ——吸收塔系统 ——制浆系统 ——浆液疏排系统 ——process water 工艺水系统 ——石膏脱水与储运系统 ——废水处理系统石灰石-石膏湿法脱硫的优点 1、工艺成熟,最大单机容量超过1000MW; 2、脱硫效率高≥95%,Ca/S≤1.03; 3、系统运行稳定,可用率≥95%; 4、脱硫剂—石灰石,价廉易得; 5、脱硫副产品—石膏,可综合利用; 6、建设期间无需停机。 缺点:系统复杂,占地面积大;造价高,一次性投资大;运行较多、运行费用高,副产品处理问题。一、燃烧前煤脱硫技术 主要为煤炭洗选脱硫,即在燃烧前对煤进行净化,去除原煤中部分硫分和灰分。分为物理法、化学法和微生物法等。 1、物理法:主要指重力选煤,利用煤中有机质和硫铁矿的密度差异而使它们分离。该法的影响因素主要有煤的破碎粒度和硫的状态等。主要方法有跳汰选煤,重介质选煤,风力选煤等。 2、化学法:可分为物理化学法和纯化学法。物理化学法即浮选;化学法又包括碱法脱硫,气体脱硫,热解与氢化脱硫,氧化法脱硫等。 3、微生物法:在细菌浸出金属的基础上应用于煤炭工业的一项生物工程新技术,可脱除煤中的有机硫和无机硫。 我国当前的煤炭入洗率较低,大约在 20%左右,而美国为 42%,英国为94.9%,法国为 88.7%,日本为 98.2%。提高煤炭的入洗率有望显著改善燃煤二氧化硫污染。然而,物理选洗仅能去除煤中无机硫的 80%,占煤中硫总含量的 15%~30%,无法满足燃煤二氧化硫污染控制要求,故只能作为燃煤脱硫的一种辅助手段。 二、燃烧中煤脱硫技术 煤燃烧过程中加入石灰石或白云石作脱硫剂,碳酸钙、 碳酸镁受热分解生成氧化钙、氧化镁,与烟气中二氧化硫反应生成硫酸盐,随灰分排出。在我国采用的燃烧过程中脱硫的技术主要有两种:型煤固硫和流化床燃烧脱硫技术。 1、型煤固硫技术:将不同的原料经筛分后按一定比例配煤,粉碎后同经过预处理的粘结剂和固硫剂混合,经机械设备挤压成型及干燥,即可得到具有一定强度和形状的成品工业固硫型煤。固硫剂主要有石灰石、大理石、电石渣等,其加入量视含硫量而定。燃用型煤可大大降低烟气中二氧化硫、一氧化碳和烟尘浓度,节约煤炭,经济效益和环境效益相当可观,但工业实际应用中应解决型煤着火滞后、操作不当会造成的断火熄炉等问题。 2、流化床燃烧脱硫技术:把煤和吸附剂加入燃烧室的床层中,从炉底鼓风使床层悬浮进行流化燃烧,形成了湍流混合条件,延长了停留时间,从而提高了燃烧效率。其反应过程是煤中硫燃烧生成二氧化硫,同时石灰石煅烧分解为多孔状氧化钙,二氧化硫到达吸附剂表面并反应,从而达到脱硫效果。流化床燃烧脱硫的主要影响因素有钙硫比,煅烧温度,脱硫剂的颗粒尺寸孔隙结构和脱硫剂种类等。为提高脱硫效率,可采用以下方法: (1)改进燃烧系统的设计及运行条件 (2)脱硫剂预煅烧 (3)运用添加剂,如碳酸钠,碳酸钾等 (4)开发新型脱硫剂 三、 燃烧后烟气脱硫技术 烟气脱硫的基本原理是酸碱中和反应。烟气中的二氧化硫是酸性物质,通过与碱性物质发生反应,生成亚硫酸盐或硫酸盐,从而将烟气中的二氧化硫脱除。最常用的碱性物质是石灰石、生石灰和熟石灰,也可用氨和海水等其它碱性物质。共分为湿法烟气脱硫技术、干法烟气脱硫技术、半干法烟气脱硫技术三类,分别介绍如下: 1、湿法烟气脱硫技术 湿法烟气脱硫技术是指吸收剂为液体或浆液。由于是气液反应,所以反应速度快,效率高,脱硫剂利用率高。该法的主要缺点是脱硫废水二次污染;系统易结垢,腐蚀;脱硫设备初期投资费用大;运行费用较高等。 (1)石灰石—石膏法烟气脱硫技术 该技术以石灰石浆液作为脱硫剂,在吸收塔内对烟气进行喷淋洗涤,使烟气中的二氧化硫反应生成亚硫酸钙,同时向吸收塔的浆液中鼓入空气,强制使亚硫酸钙转化为硫酸钙,脱硫剂的副产品为石膏。该系统包括烟气换热系统、吸收塔脱硫系统、脱硫剂浆液制备系统、石膏脱水和废水处理系统。由于石灰石价格便宜,易于运输和保存,因而已成为湿法烟气脱硫工艺中的主要脱硫剂,石灰石—石膏法烟气脱硫技术成为优先选择的湿法烟气脱硫工艺。该法脱硫效率高(大于95%),工作可靠性高,但该法易堵塞腐蚀,脱硫废水较难处理。 (2)氨法烟气脱硫技术 该法的原理是采用氨水作为脱硫吸收剂,氨水与烟气在吸收塔中接触混合,烟气中的二氧化硫与氨水反应生成亚硫酸氨,氧化后生成硫酸氨溶液,经结晶、脱水、干燥后即可制得硫酸氨(肥料)。该法的反应速度比石灰石—石膏法快得多,而且不存在结构和堵塞现象。 另外 ,湿法烟气脱硫技术中还有钠法、双碱脱硫法和海水烟气脱硫法等,应根据吸收剂的来源、当地的具体情况和副产品的销路实际选用。 2、半干法烟气脱硫技术 主要介绍旋转喷雾干燥法。该法是美国和丹麦联合研制出的工艺。该法与烟气脱硫工艺相比,具有设备简单,投资和运行费用低,占地面积小等特点,而且烟气脱硫率达75%—90%。 该法利用喷雾干燥的原理,将吸收剂浆液雾化喷入吸收塔。在吸收塔内,吸收剂在与烟气中的二氧化硫发生化学反应的同时,吸收烟气中的热量使吸收剂中的水分蒸发干燥,完成脱硫反应后的废渣以干态形式排出。该法包括四个在步骤:1)吸收剂的制备;2)吸收剂浆液雾化;3)雾粒与烟气混合,吸收二氧化硫并被干燥; 4)脱硫废渣排出。该法一般用生石灰做吸收剂。生石灰经熟化变成具有良好反应能力的熟石灰,熟石灰浆液经高达15000~20000r/min的高速旋转雾化器喷射成均匀的雾滴,其雾粒直径可小于100微米,具有很大的表面积,雾滴一经与烟气接触,便发生强烈的热交换和化学反应,迅速的将大部分水分蒸发,产生含水量很少的固体废渣。