VRV空调系统的定义及控制原理

来源:百度文库 编辑:神马文学网 时间:2024/03/29 17:32:32
1.
VRV空调系统是在电力空调系统中,通过控制压缩机的制冷剂循环量和进入室内换热器的制冷剂流量,适时地满足室内冷热负荷要求的高效率冷剂空调系统。VRV空调系统需采用变频压缩机、多极压缩机、卸载压缩机或多台压缩机组合来实现压缩机容量控制;在制冷系统中需设置电子膨胀阀或其它辅助回路,以调节进入室内机的制冷剂流量;通过控制室内外换热器的风扇转速积,调节换热器的能力。在变频调速和电子膨胀阀技术逐渐成熟之后,VRV空调系统普遍采用变频压缩机和电子膨胀阀。
空调系统在环境温度、室内负荷不断变化的条件下工作,而且系统各部件之间、系统环境与环境之间相互影响,因此VRV空调系统的状态不断变化,需通过其控制系统适时地调节空调系统的容量,消除其影响,是一种柔性调节系统。其工作原理是:由控制系统采集室内舒适性参数、室外环境参数和表征制冷系统运行状况的状态参数,根据系统运行优化准则和人体舒适性准则,通过变频等手段调节压缩机输气量,并控制空调系统的风扇、电子膨胀阀等一切可控部件,保证室内环境的舒适性,并使空调系统稳定工作在最佳工作状态。
2. VRV空调系统的特点
变频VRV空调系统的相对于定速系统具有明显的节能、舒适效果:
(1) VRV空调系统依据室内负荷,在不同转速下连续运行,减少了因压缩机频繁启停造成的能量损失;在制冷/制热工况下,能效比COP随频率的降低而升高,由于压缩机长时间工作在低频区域,故系统的季节能效比SEER相对于传统空调系统大大提高;采用压缩机低频启动,降低了启动电流,电气设备将大大节能,同时避免了对其它用电设备和电网的冲击。
(2) VRV空调系统具有能调节容量的特性,在系统初开机时室温与设定温度相差很大,利用压缩机高频运行的方式,使室温快速地到达设定值,缩短室内不舒适的时间;系统调节容量使室温波动很小,改善了室内的舒适性;极少出现传统空调系统在启停压缩机时所产生的振动噪声,且室内机风扇电机普遍采用直流无刷电机驱动,速度切换平滑,降低了室内机的噪声。由于VRV空调系统比冷水机组的蒸发温度高3℃左右,其COP值约提高10%;结构紧凑,体积小,管径细,不需要设置水系统和水质管理设备,故不需要专门的设备间和管道层,可较大程度地降低建筑物造价,提高建筑面积的利用率;室内机的多元化,可实现各个房间或区域的的独立控制;而且热回收VRV空调系统,能在冬季和过渡季节,向需要同时供冷和供热的建筑物提供冷、热源,将制冷系统的冷凝负荷和蒸发负荷同时利用,大大提高能源利用效率。因此,多元VRV空调系统将是今后中小型楼宇空调系统的发展主流之一[1] 。
3. 多元变频VRV空调系统的工作原理
在传统的冷库、空调系统中,为适应多用户库(室)风负荷的变动,减小的启动电流,常采用卸载压缩机或多台压缩机并联的制冷系统。当负荷变动时,根据回气压力的高低,增减压缩机的运行台数。多元VRV空调系统即是吸收了此思想,而发展起来的变制冷剂流量制冷系统。由于多元VRV空调系统存在有制冷流量分配控制和系统稳定性控制问题难以解决,在微电脑、电子膨胀阀、变频技术以后才开始重视其研究开发工作。自1985年开始发展至今,世界上主要是日本三菱、日立、大金、夏普、松下等少数几家大企业拥有这项技术。,多元VRV空调系统主要有单冷型、热泵型和热回收型三种形式,将这三种型式与蓄热(冷)系统、变风量系统等结合,又扩大了VRV空调系统的应用范围。
3.1 单冷或热泵型多元VRV空调系统
表1示出了各种单冷和热泵型多元VRV空调系统的原理图。在典型的单冷(图1)或热泵(图3)型多元VRV空调系统中,压缩机通常采用一台变频压缩机,在大系统中,由一台变频压缩机或多极压缩机与多台定速压缩机构成压缩机组;在各室内机和室外机上,设置有供节流和流量调节的电子膨胀阀(有些系统在室外机上采用普通膨胀阀[2] );在系统的典型部位安放有温度传感器和压力传感器。在制冷工况下,室外机电子膨胀阀全开,通过室内机电子膨胀阀节流降压,控制室内温度和各室内机热交换器出口制冷剂的过热度,由压缩机频率调节吸气压力;在制热工况下,室外机电子膨胀阀,控制室外机热交换器出口制冷剂的过热度,室内机电子膨胀阀控制室温和室内热交换器出口的制冷剂过冷度,通过改变压缩机频率调节压缩机排气压力。为提高系统的稳定性、可控性和可靠性,在一些系统中,增设了辅助回路。
1994年,三菱开发出带有内部热交换回路的变频单冷型多元VRV空调系统[3],由图2可知,通过回热回路,实现了制冷剂的有效移动,减少了系统的压力损失,提高了系统的能交比。研究表明,经回热回路的流量为压缩机循环流量的2-22%时,制冷量基本一致,能效比提高10%。同时由于采用了高压制冷剂的饱和点控制,减少了系统中的制冷剂的充灌量。
面临电力供应的紧张局面,"移峰填谷"是急待解决的问题,随着峰谷电价的实施,蓄热空调系统开始得到发展,从1995年开始,开始应用于热泵型VRV空调系统中[4,5]。蓄热型VRV空调系统如图4所示,由室外机、蓄热槽和多个室内机组成。室外机内有变频压缩机、制冷剂泵和热交换器;在蓄热槽内部装有盘管换热器和相变蓄热材料。系统在制冷和制热运行时,都各具有3种运转模式,即蓄冷(热)运行、蓄冷(热)利用制冷(热)运行和压缩机制冷(热)运行。在蓄冷(热)运行和压缩机制冷(热)运行模式下,制冷剂泵停止运行,系统的工作方式和普通蓄冷空调系统一致;在蓄冷利用制冷运行模式下,制冷剂泵运转,将一部分制冷剂压缩,送入蓄冷槽盘管换热器,制冷剂将热量排至蓄冷材料(取冷)而冷凝,与在室外热交换器内冷凝后的制冷剂液体汇合,经室内机电子膨胀阀节流,送入室内机进行制冷;同理,在蓄热利用制热运行模式下,制冷剂泵运转,在蓄热材料中取热,送入室内机。系统"移峰填谷"的机理是利用降低冷凝温度或提高蒸发温度,减小压缩比,降低高峰电力的使用量。
3.2 热回收型多元VRV空调系统
热回收型VRV空调系统是于90年代初研制出,它不仅具有单冷和热泵形系统的功能,同时由于冷凝负荷和蒸发负荷都被利用,所以大大改善了能源利用效率。对于同时需要供冷与供热的建筑物增多的今天,具有极大的应用前景,所以也就成为了当前研究的重要课题之一。当今的热回收型VRV空调系统具有3管式和2管式两种形式[6-12],参见表2。
 
 
(1) 3管式热回收型多元VRV空调系统
3管式VRV空调系统如图5所示,室外机由压缩机、室外热交换器和气液分离器等构成;室内机由热交换器、电磁三通阀及电子膨胀阀构成。室外机与室内机之间由高压气体管、高压液体管、低压气体管3根管道相连,故称"3管式"系统。
空调系统通过高压气体管将高温高压蒸气引入用于供热的室内机,制冷剂蒸气在室内机内放热冷凝,流入高压液体管;制冷剂从高压液体管进入制冷运行的室内机中,蒸发吸热,通过低压气体管返回压缩机。室外热交换器用于平衡各室内机的冷热负荷的缓冲设备,视室内运行模式起着冷凝器或蒸发器的作用。其功能取决于各室内机的工作模式和负荷大小。
(2)2管式热回收型多元VRV空调系统
2管式VRV空调系统如图6所示,系统由室外机、分流控制器和室内机组构成。其中,室外机由压缩机、热交换器和气液分离器等构成;分流控制器由气液分离器、3个电子膨胀阀、回热器、高低压气体转换阀组等组件构成,放置在离室内机组较近的部位;室同机由电子膨胀阀和热交换器构成。室外机与分流控制器之间由高压气体管和低压气体管两根管道相连,故称"2管式"系统。
室外热交换器用于平衡各室内机的冷热负荷,起着冷凝器或蒸发器的作用。在冷暖混合运行模式下,控制室外热交换器风扇转速,将部分高温蒸气引入分流控制器内,蒸气和液体在气液分离器中分离,蒸气部分进入室内供热,液体部分和在供热室内机中冷凝后的液体合流进入供冷室内机中,液态制冷剂蒸发吸热后,经回气管返回压缩机。
此外,将VRV空调系统的一个或多个末端机通过送、回风风道与多个房间相连就构成了与VRV结合的多元VRV空调系统。风道的各个室内末端装置根据室内温度与设定温度的差值大小控制其风量,末端机根据送风道内的静压控制总送风量的大小,由末端机的过热度控制相应电子膨胀阀的开度,压缩机根据所有室内机的负荷大小控制其转速。这种系统的研究始于80年代中期,现以用于单冷和热泵型VRV空调系统中[13]。
4. 多元VRV空调系统研究开发中尚需解决的问题
多元VRV空调系统发展至今,无论是在制冷系统,还是在控制方法上都取得了很大的进步,但仍存在以下几方面的问题,尚需进一步深入研究。
(1)舒适性:有待于新的传感器的开发和现代控制理论的应用,以推进智能空调系统的发展。
(2)稳定性和节能性控制问题:研究制冷系统的各调节部件对系统特性的影响规律,实现系统的稳定调节和节能控制。
(3)控制器的可移植性问题:深入研究制冷系统的特性规律,研制出适合于大小系统兼容,热泵型和热回收型系统通用,移植性较强的控制器。
(4)系统综合性能评价问题:VRV空调系统特别是热回收型系统,由于各换热器的功能和温度条件不尽相同,如何评价系统的综合性能,尚无合理和实有的方法。
(5)制冷剂替代问题:由于VRV空调系统的管道接头较多,增加了制冷剂泄漏的可能性,且系统的内容积过大,增大了制冷剂充灌量,在HCFC控制计划实施后,系统价格会大大上升。所以,减少制冷剂充灌量和减少泄漏是系统开发过程中应该重视的问题,同时应加强对HCFC22的替代工质在VRV空调系统中的应用研究。
一 户式中央空调的分类
☆ 风管机
一台定频室外机,一台定频室内机,通过风管把冷热风送至每个房间,可方便将室外新风引入;对空气进行加湿等集中处理也较容易,是廉价的机器,设计合理每个房间的噪声仅增加1~3分贝,卧室不必吊顶,每个房间在可高于主温控器设定的温度以上,对温度进行控制;可以有一定比例的能量转移,达到节能及加快空调冷热速度的效果。
室内机局部噪声较大,根据现场不同的安装条件,实测在42~52分贝之间,对设计及安装要求很专业。
☆ 一拖多机组
(1)定频多联机
把分体空调集中到一个室外机中,最多一拖三里面有三台压缩机,冷媒系统各自独立;把明装壁挂室内机改变成暗藏式;引进新风困难,是分体空调的一种变形,卧室内风机噪音由低到高要增加7~14分贝,最高达50分贝。每个卧室需增加长1.2m以上,宽0.6m,高0.3m的吊顶,另需设检修孔;每个内机都需有冷凝水排放的管路。
冷媒系统独立,但电路部分的有共用点;如发生外风机,外机温度探头、压力保护或电器局部短路等故障时,整套机器将无法运行。
(2)定、变频一拖多
其中有1~2台变频压缩机或另加1台定频压缩机,电路上有射频干扰,对电脑有影响。检修孔新风引入吊顶与冷凝水与多联机相同;对氟管的分支器要求设计合理;对上,下层共用1台机器,管路要求更高;较易在全开启时出现末端内机效果太差的情况。
☆ 冷热水机
定频冷热水机或变频冷热水机
大型中央空调的缩小,冷凝器由水冷变成风冷;用水泵将冷热水送至风机盘管。引入新风、检修孔、吊顶冷凝水排放、噪声指标与多联机相同。但又增加了冷热水管;由于温度差很大,密封问题突出,出现漏水对装潢的破坏较大。另外大型中央空调蒸发器都定时清理和酸洗;家用冷热水机对此还无良策,长期使用冷热交换器的效率将大打折扣。如能与中央水处理系统相结合,可克服上述难点。
单独房间使用空调,其它房间风机盘管有冷热水管流过,也会产生能耗;现较流行采用电磁水阀来关闭水路;除去造价上的因素外;还会使局部水流速过高,产生噪声的问题。
二. 户式中央空调的工作原理
1.冷(热)水机组的基本工作过程是:室外的制冷机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。
2.风管(道)式机组的基本工作过程是:供冷时,室外的制冷机组吸收来自室内机组的制冷剂蒸气经压缩、冷凝后向各室内机组输送液体制冷剂。供热时,室外的制冷机组吸收来自冷凝器的制冷剂蒸气经压缩后向各室内机组输送汽体制冷剂,室内机组通过布置在天花板上的回风口将空气吸入,进行热交换后送入安装在室内各房间天花板中的风管(道)内,并通过出风口上的散流器向室内各房间输送空气。在风管(道)上设计有新风门和排风门,可以按一定比例置换空气,以保证室内空气的质量。
3.变频一拖多机组的基本工作过程是:供冷时,室外的制冷机组吸收来自室内机组的制冷剂蒸气经压缩、冷凝后向各室内机组输送液体制冷剂。供热时,室外的制冷机组吸收来自冷凝器的制冷剂蒸气经压缩后向各室内机组输送汽体制冷剂。各室内机组通过暗装的方式布置在天花板上。通过其回风口将空气吸入,进行热交换后送入,再从送风口将处理后的空气采取就地回风的方式送回室内。
机组在能量调节方式上由微电脑控制,室外机组的变频式压缩机根据室内冷热负荷的变化,自动调节压缩机的工作状态,以满足室内冷热负荷的要求。
中央空调原理包括:一、中央空调制冷原理:有压缩式、吸收式等,这里不再细述;二、中央空调系统原理:有风系统工作原理、水系统工作原理、盘管系统工作原理等,简单介绍如下:
1、中央空调原理的新风系统工作:
室外的新鲜空气受到风处理机的吸引进入风柜,并经过过滤降温除湿后由风道送入每个房间,这时的新风不能满足室内的热湿负荷,仅能满足室内所需的新风量,随着室内风机盘管处理室内空气热湿负荷的同时,多余出来的空气通过回风机按阀门的开启比例一部分排出室外,一部分返回到进风口处以便再次循环利用。如图:
2、中央空调原理的盘管系统工作:
室内的风机盘管工作时吸入一部分由风柜处理后的新风,再吸入一部分室内未处理的空气经过工艺处理后,由风口送出能够吸收室内余热余湿的冷空气,使室内温度湿度达到所需要的标准,如此循环工作。如图:
3、中央空调原理的风管积尘原因:
室外空气经中央空调处理时,由于大多数粗精效过滤网仅能过滤3um以上的悬浮颗粒物,其微细颗粒物则随风直接进入风管,而风管内表面实际粗糙度远远高于微细颗粒物的大小,因此,这些微细的颗粒物随着空气与风管内壁相互碰撞摩擦产生静电吸附越积越多,从而导致风管内壁的粗糙度越来越大,灰尘粘附加速进行,如此长年累月形成较厚积尘。如图: