Colossal electroresistance and colossal magne...

来源:百度文库 编辑:神马文学网 时间:2024/04/19 05:32:23
Appl. Phys. Lett. 96, 122109 (2010); doi:10.1063/1.3368123 (3 pages)
Colossal electroresistance and colossal magnetoresistance in spinel multiferroic CdCr2S4
C. P. Sun1, C. L. Huang1, C. C. Lin1, J. L. Her1, C. J. Ho1, J.-Y. Lin2, H. Berger3, and H. D. Yang1
1Department of Physics, Center for Nano Science and Nano Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwanmap
2Institute of Physics, National Chiao-Tung University, Hsinchu 300, Taiwanmap
3Institutes of Physics of Condensed Material, EPFL, Lausanne 1015, Switzerlandmap
(Received 29 December 2009; accepted 1 March 2010; published online 25 March 2010)

Alerts  Alert Me When Cited
Alert Me When Corrected
Tools  Download Citation
Email Abstract
Add to MyScitation
Permissions/Reprints
Blog This Article
Print-Friendly
Research Toolkit
Share    Connotea
  CiteULike
  del.icio.us
  BibSonomy
Tweet this Article
Add to Facebook
Abstract
References (25)
Citing Articles (1)
Article Objects (4)
Related Content
Colossal magnetoresistance (CMR) and colossal electroresistance (CER) induced by the electric field in spinel multiferroic CdCr2S4 are reported. It is found that a metal-insulator transition in CdCr2S4 is triggered by the electrical field. In magnetic fields, the resistivity ρ of CdCr2S4 responds similarly to that of CMR manganites. Combing previous reports, these findings make CdCr2S4 the unique compound to possess all four properties of the colossal magnetocapacitive, colossal electrocapacitive, CER, and CMR. The present results open a new venue for searching new materials to show CMR by tuning electric and magnetic fields.
© 2010 American Institute of Physics
RELATED DATABASES
To view database links for this article, you need tolog in.
KEYWORDS and PACS
Keywords
cadmium compounds,chromium compounds,colossal magnetoresistance,metal-insulator transition,multiferroics
PACS
75.47.Gk
Colossal magnetoresistance
71.30.+h
Metal-insulator transitions and other electronic transitions
75.85.+t
Magnetoelectric effects, multiferroics
77.80.-e
Ferroelectricity and antiferroelectricity
ARTICLE DATA
Permalink
http://link.aip.org/link/APPLAB/v96/i12/p122109/s1
PUBLICATION DATA
ISSN:
0003-6951 (print)
1077-3118 (online)
Publisher:
American Institute of Physics
For access to fully linked references, you need tolog in.

View in Separate Window/Tab
Selected:Export Citations |Add to MyArticles
A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
C. Zener, Phys. Rev. 82, 403 (1951).
A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
C. ?en, G. Alvarez, and E. Dagotto, Phys. Rev. Lett. 98, 127202 (2007).
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
J. Hemberger, P. Lunkenheimer, R. Fichtl, H. -A. Krug von Nidda, V. Tsurkan, and A. Loidl, Nature (London) 434, 364 (2005).
G. Catalan and J. F. Scott, Nature (London) 448, E4 (2007).
C. P. Sun, C. C. Lin, J. L. Her, C. J. Ho, S. Taran, H. Berger, B. K. Chaudhuri, and H. D. Yang, Phys. Rev. B 79, 214116 (2009).
S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. Lett. 96, 157202 (2006).
T. Rudolf, Ch. Kant, F. Mayr, J. Hemberger, V. Tsurkan, and A. Loidl, New J. Phys. 9, 76 (2007).
T. Rudolf, C. Kant, F. Mayr, J. Hemberger, V. Tsurkan, and A. Loidl, New J. Phys. 9, 76 (2007).
V. Gnezdilov, P. Lemmens, Y. G. Pashkevich, P. Scheib, C. Payen, K. Y. Choi, J. Hemberger, A. Loidl, and V. Tsurkan, arXiv:cond-mat/0702362 (unpublished).
C. J. Fennie and K. M. Rabe, Phys. Rev. B 72, 214123 (2005).
Y. K. Kuo, C. S. Lue, F. H. Hsu, H. H. Li, and H. D. Yang, Phys. Rev. B 64, 125124 (2001).
H. W. Lehmann and M. Robbins,J. Appl. Phys. 37, 1389 (1966)JAPIAU000037000003001389000001.
B. Martínez, R. Senis, J. Fontcuberta, X. Obradors, W. Cheikh-Rouhou, P. Strobel, C. Bougerol-Chaillout, and M. Pernet, Phys. Rev. Lett. 83, 2022 (1999).
Z. Yang, S. Tan, Z. Chen, and Y. Zhang, Phys. Rev. B 62, 13872 (2000).
Z. R. Yang, X. Y. Bao, S. Tan, and Y. H. Zhang, Phys. Rev. B 69, 144407 (2004).
P. Majumdar and P. Littlewood, Phys. Rev. Lett. 81, 1314 (1998).
P. Majumdar and P. B. Littlewood, Nature (London) 395, 479 (1998).
K. G. Nikiforov, A. G. Gurevich, S. I. Radautsan, L. M. Emiryan, and V. E. Tezlevan, Phys. Status Solidi A72, K37 (1982).
V. C. Srivastava,J. Appl. Phys. 40, 1017 (1969)JAPIAU000040000003001017000001.
C. P. Sun and H. D. Yang (unpublished).
C. F. Chang, P. S. Chou, L. H. Tsay, S. S. Weng, S. Chatterjee, H. D. Yang, R. S. Liu, and W. H. Li, Phys. Rev. B 58, 12224 (1998).
C. -H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, Nature Mater. 8, 485 (2009).
For access to citing articles, you need tolog in.
Figures (4)
Access to article objects (figures, tables, multimedia) requires a subscription;log in to view available files.
(Access to supplementary material, where available, is free for this journal.)
Related Articles |Related Patents
Related Articles
Analysis of asymmetric giant magnetoimpedance in field-annealed Co-based amorphous ribbon
Appl. Phys. Lett. 75, 2114 (1999)
Tunneling magnetoresistance in granular composites
J. Appl. Phys. 92, 5281 (2002)
Large magnetostriction effect in bulk (La1−xSmx)2/3Sr1/3MnO3
J. Appl. Phys. 85, 4494 (1999)
H–T diagrams of Ln1−xCaxMnO3 (x = 1/2, 1/3) in pulsed fields up to 50 T
J. Appl. Phys. 85, 5570 (1999)
Comment II on “Grain-boundary effects on the electrical resistivity and the ferromagnetic transition temperature of La0.8Ca0.2MnO3 [Appl. Phys. Lett. 77, 118 (2000)]
Appl. Phys. Lett. 78, 1793 (2001)
View More
Related Patents
Two-phase ferroelectric-ferromagnetic composite and carrier therefrom
Two phase ferroelectric-ferromagnetic composite carrier
Magnetoresistive magnetic sensor and magnetic storage apparatus
FE-CR soft magnetic material and a method of manufacturing thereof
Magnetoresistive magnetic sensor and magnetic storage apparatus
View All

??
ADVERTISEMENT