ipcc报告解读 6 讨论

来源:百度文库 编辑:神马文学网 时间:2024/04/25 09:24:27

 

6 讨论

6.1 反馈因子:

反馈因子是争议最大的因子,这里首先来讨论它:

第一个问题,报告引用的结果来自一个工作,并没有引用其它工作。这与报告号称综述现有结果是不一致的。

第二个问题,2009年Linden院士根据1985-1999年实测大气层顶净辐射与海水表面温度变化之间关系,得到的结果是-4.55±1.6W/m2/K,虽然Trenberth在2010年发表文章,认为该文数据选取上有问题,主要包括一个点没有考虑Pinatubo火山喷发影响(1991-1993),还有一些点选取有问题,但是,Trenberth给出的结果也是负的,给出的结果是-0.4--1.6 W/m2/K。

这与报告所采用的数据2.15W/m2/K差异很大,特别是,实测得到的是负反馈,而报告采用的是正反馈,正反馈是放大效应,报告号称正反馈还可能非常大。而负反馈是缩小二氧化碳加倍带来的温室效应,从而小于直接效应所增加温度1.2K。由于当前二氧化碳浓度处于较快增长阶段,这个结果说明如果二氧化碳效应是主要的,则反馈因子是负的,其影响比报告小得多,还有一种可能是,二氧化碳所起作用很小。

两篇文章使用的方法是Geogory等于2002年提出的,当时主要用于模型计算时,减少估算反馈因子的时间 (Gregory, J. M., W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thorpe, J. A. Lowe, T. C. Johns, and K. D. Williams (2004), A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.)。方法本身是得到大家认可的, 已经引用45次。方法简述如下:

N=F-H

N是大气层顶净辐射,F是施加辐射强迫,H是温度变化产生的辐射,H=C△T带入上式,得到

N=F-C△T

在不同时间段实测得到一组N和△T,如果C不变,则不同的点应在一条直线上,直线斜率就是C。

Trenberth认为如何选点对结果影响太大,因此,这个方法是不可靠的。另外认为C如果不是常数,这个方法也不适用。这里,对第一点,最大的可能性还是二氧化碳不是温室效应主要原因,因此反馈因子随不同原因而变化,例如,报告中提到了太阳辐射强迫的效应比二氧化碳效应小。当前大气二氧化碳浓度的增加速度非常高,这时候,实测数据还不能反应二氧化碳的效应,这就充分说明二氧化碳效应的反馈效应分析是很成问题的。对第二点,报告中认为二氧化碳加倍引起的反馈效应因子的变化并不很大,不存在C变化大的问题。

Trenberth 通过选取数据,让AMIP模型计算结果与模型一致,从而认为模型是没有问题的。这首先说明,Trenberth承认了方法是正确的,根据观测数据得到的反馈是负反馈,但是,报告采纳的结果是正反馈。其次,气候模型是基于大气动力学,本身湍流效应就使结果不可靠(参见后面6.5节),通常调整模型参数,很容易得到变化很大的不同数据。

 

6.2 辐射强迫

按照辐射强迫定义,我们只需要让大气二氧化碳浓度加倍,按照当前大气状况来计算辐射变化。从理论上分析,应该能够得到比较准确的加倍大气二氧化碳浓度的辐射强迫:如果我们实测地球大气温度和压力数据,根据这个数据来计算,就应该得到比较准确的结果,当然工作量很大,需要测一年里很多时间,地球大气不同位置,越多越好。然而,目前显然没有做此项工作,报告引用的结果都是计算结果,似乎还是简化计算。

对辐射强迫结果也持有很大怀疑。报告采用对流层顶作参照面,这个参照面的位置是变化的,远不及大气层顶定义清楚,所以报告中给出12个计算结果,却有5种辐射强迫定义。为什么?另外,利用不同辐射强迫参考面,可以根据模型计算得到所有三个中间变量,从而得到温度变化,这可以检验模型的内在一致性。

下面提出一致辐射强迫与透射率变化关系,来看报告中辐射强迫问题:

二氧化碳浓度增加,导致大气透射率降低,就是地面红外辐射透过大气部分减少,从而增加了辐射强迫,其增加量是Fs*dA,Fs是地面红外辐射;另一方面,大气本身的红外辐射输出是Fa=2bεσT4,这里T是大气温度,ε是发射率,σ是常数,因为大气辐射对外和对地面,在假定大气平均温度是T时,总辐射是2εσT4,由于上下红外辐射量不等,对地面辐射较多,用b来表示这种差别,所以大气对外辐射就表示成2bεσT4,在发射率增加以后,代表对外辐射增加,也就是辐射强迫减小。通常认为大气对地面红外辐射透射率降低dA等于大气红外辐射发射率ε增加(两者有差别,但很小)。则大气对外辐射减少就是dFa=2bdεσT4/ε=-FabdA/ε,则总的辐射强迫就是

      dRf=Fs*dA-bFa*dA/(1-A)

根据报告,Fs=390,bFa=195, A=40/390; dRf=3.8;

        dA=3.8/(390-195/(1-40/390))

由于云占天空62%,所以求得的系数还要除以0.38,所以晴天大气透过率减少(dA)等于5.8%

               

另一方面,按照报告给出的水蒸气反馈因子是1.8,最终温度增加3.26K,产生的辐射强迫是1.8*3.26=5.89W/m2,水蒸汽的主要作用也是使大气透射率降低,从而增加辐射强迫,这样,两个效应叠加后辐射强迫就是9.67W/m2,根据上式公式计算得到的晴天大气透过率减少dA等于15%. 根据报告中数据,可以得到现有透过率是A=40/390/.38=0.27。

Barker在1999年文章里给出了透过率拟合公式,可以计算不同浓度二氧化碳和水蒸气浓度(也可以改成地表温度),该式如下(原文有错误,经与作者联系,得到其更正文):

A={1-exp(-0.082-(2.38PwHwRH+40.3fCO2)0.294]}

Pw=1760000exp(-5318/Ts) bars.

Hw=2 km

RH=80%

fCO2是大气二氧化碳浓度,工业革命前二氧化碳浓度是2.8e-4,加倍后是5.6e-4. 根据该式计算得到的结果,加倍二氧化碳浓度仅使大气透过率降低0.011,考虑水蒸汽反馈效应,假设地面温度增加3.26K,得到的大气透射率降低总量是0.024,两个结果都与报告给出的结果相差很大。根据barker拟合公式,计算得到的二氧化碳加倍的直接辐射强迫是1.93,而水蒸汽反馈效应带来的辐射强迫是2.22,总的辐射强迫是4.15W/m2。比从报告数据得到的9.67W/m2小一半多。

该拟合公式只考虑了三种温室气体二氧化碳,水蒸气和臭氧,这使公式计算出来的透过率偏大,从而使结果显得更加不合理。增加其它气体,会使透过率降低,当不一定对两者二氧化碳浓度的透射率变化产生很大影响。

 

6.3 直接气候敏感因子

第一点,不太赞成报告中关于直接气候敏感因子的定义,这里再给出原定义做对比,报告中的定义是:在理想情况下,包括无反馈效应(但包括温度升高导致的增强的辐射冷却效应),均一的温度变化,大气二氧化碳加倍导致的气候响应(就是气温变化)。

定义中无反馈效应仅指辐射冷却效应,缺少了对流蒸发热导三种传热过程。定义中要求均一的温度变化,这是不可能的,地球大气和表面温度变化必然是不均匀的。

实际使用的文献数据,并不是按照报告定义来做的,这反映了报告写作方面的不严谨。

第二点:报告中使用的数据,仍然是一篇工作,而且是和反馈因子数据是一个来源。反映不了当前这个方面的工作。例如,IPCC上一个报告采用的是1988年Ramanathan的数据,其结果仅是0.24K/(W/m2)。

 

6.4 气候敏感度或气温变化

A 实测气温变化:

参考:(Linden, 2007, Taking Greenhouse Warming Seriously)大气二氧化碳浓度加倍,模型预测温度变化最大的是赤道上空,靠近对流层顶处,温度变化是靠近地表的气温变化的3倍。如下图


图 这是4个模型模拟二氧化碳浓度加倍后的温度变化。横坐标是维度,纵坐标是高度(用大气压力表示)

但是,高空实测结果,地表气温变化大于高空,参见下图。这说明,一种可能性是模型错误,还有一种是,其它因素为主,二氧化碳浓度变化在其中影响不足1/3。

 

B 古气候

报告给出了古代直至4亿年前大气二氧化碳浓度变化的测量结果,大气二氧化碳浓度曾高达几千ppm。报告仅给出几十万年的温度变化数据。但是发表在2001年科学杂志上文章给出的结果显示,在过去6亿年,热带平均温度最大变化仅4K左右,参见下图。这与报告的定量结论相差很大,报告给出的是二氧化碳加倍,从280增加到560ppm,温度升高3.26K。

Records of change. (A) Comparison of CO2 concentrations from the GEOCARB III model (6) with a compilation (9) of proxy-CO2 evidence (vertical bars). Dashed lines: estimates of uncertainty in the geochemical model values (6). Solid line: conjectured extension to the late Neoproterozoic (about 590 to 600 Ma). RCO2, ratio of CO2 levels with respect to the present (300 parts per million). Other carbon cycle models (21, 22) for the past 150 million years are in general agreement with the results from this model. (B) Radiative forcing for CO2 calculated from (23) and corrected for changing luminosity (24) after adjusting for an assumed 30% planetary albedo. Deep-sea oxygen isotope data over the past 100 Ma (13, 14) have been scaled to global temperature variations according to (7). (C) Oxygen isotope-based low-latitude paleotemperatures from (5). (D) Glaciological data for continental-scale ice sheets modified from (7, 8) and based on many sources. The duration of the late Neoproterozoic glaciation is a subject of considerable debate. (来源 http://scienceonline.org/cgi/content/full/292/5518/870/F1)

 

参见报告:第441页,Figure 6.1. (Top) Atmospheric CO2 and continental glaciation 400 Ma to present. Vertical blue bars mark the timing and palaeolatitudinal extent of ice sheets (after Crowley, 1998). Plotted CO2 records represent fi ve-point running averages from each of the four major proxies (see Royer, 2006 for details of compilation). Also plotted are the plausible ranges of CO2 from the geochemical carbon cycle model GEOCARB III (Berner and Kothavala, 2001). All data have been adjusted to the Gradstein et al. (2004) time scale.