数码相机全应用df

来源:百度文库 编辑:神马文学网 时间:2024/03/29 14:03:28
数码相机全应用

',1)">
数码相机全应用/实战调整数码照片/数码相机的保养
照片四周发虚(Vignetting)
变焦镜头(尤其是低端的变焦镜头),有时候会使照片的四周发虚。在这种情况下,桶形失真变得更加明显,导致照片的角落出现暗角,如图所示。使用焦距转换器也可能会带来照片四周发虚的问题。

照片四周发虚
物距(Subject Distance)
顾名思义,物距就是指照相机镜头与被摄物体之间的距离。物距的改变会使透视效果改变。在相同的光圈设置下,物距的改变同样会影响照片的景深。
枕形失真(Pincushion Distortion)
枕形失真是由镜头引起的画面向中间“收缩”的现象。我们在使用长焦镜头或使用变焦镜头的长焦端时,最容易察觉枕形失真现象。特别是在使用焦距转换器后,枕形失真很容易便会发生。当画面中有直线(尤其是靠近相框边缘的直线)的时候,针垫形失真最容易被察觉。普通消费级数码相机的针垫形失真率通常为0.4%,比桶形失真率低。与针垫形失真相对的是桶形失真,我们在上面的专题已作详细介绍。

针垫形失真使正方形向内收缩
针垫形失真例子
枕形失真的矫正
我们可以通过Adobe Photoshop等一系列软件,矫正数码相机输出的针垫形失真图像,掌握了诀窍以后,难度并不大。
视角(Picture Angle)照片的视野范围由镜头的覆盖角度决定,水平视野范围和垂直视野范围同样能被测量。由于不同类型(格式)的照相机拥有不同的纵横比,因此视角通常可以用来描述镜头能覆盖的场景范围。一枝短焦距的镜头(如28mm广角)产生的较大,一枝长焦镜头(如200mm长焦)产生的视角较小。在35mm格式中,50mm的镜头被称为标准镜头,因为它产生的象角与人类眼睛产生的视角是一样大的(约46°)。

随着焦距的改变,象角也相应改变。下面的例子将作形象说明:

30mm广角
100mm长焦,象角较小,该图像为左图红色框内的场景。
透视(Perspective)
如果两个人分别长焦镜头和广角镜头拍摄同一个物体,使用广角镜头的人想该物体与使用长焦镜头所得的物像等大,它就必须在拍摄的时候选择离被摄物体近一点的距离。由于上述做法时会影响画面透视效果的,所以我们也可以认为不同焦距的镜头拥有不同的透视效果。请读者注意,改变焦距而不改变物距是不会令透视效果产生变化的。

A,以33mm广角拍摄

B,图A红色框内图像的放大图

C,以80mm长焦拍摄,照相机的拍摄位置与图A相同(物距相同),透视效果与图B相同

D,以33mm广角拍摄,但是拍摄距离缩短,两件物体的距离明显增大,与图C的透视效果完全不同。
图B与图C说明只是焦距的改变而物距不变,透视效果是不会有变化的。
图D表明不管焦距有何变化,改变物距就能改变透视效果。
图C和图D表明:长焦会压缩透视感(使物体间的距离看上去比实际近),广角夸大透视感(使物体间的距离看上去比实际远)。透视效果变化的直接原因是物距的改变,而焦距的改变只是间接原因。人们通常有一种“广角镜头透视感好”的错觉,因为广角镜头可以允许使用者在更近的距离拍摄,长焦镜头可以让使用者在更远距离拍摄。
微距摄影(Macro)
微距摄影的严格定义应该是这样的:微距摄影指照相机通过镜头的光学能力,拍摄与实际物体等大(1:1)或比实际物体稍小的图像。例如你要拍摄一朵直径为21.6mm的花朵,它能填充35mm胶片(斜线长度为43.3mm )的一半面积。在照片中,花朵被放大的倍率为43.3:21.6即2:1(2倍)。微距摄影的放大倍率通常在1倍到50倍之间,严格来说应该在1倍到10倍之间。
通过上面的说明,我们可以理解为何数码相机的微距能力比较强大-正是因为传感器的大小比35mm胶片小得多。例如,利用小型数码相机(假设焦距乘数为4倍),拍摄上述直径为21.6mm的花朵,它的放大倍率为1:2,而胶卷照相机需要的放大倍率为2:1。这就说明,小型数码相机比胶卷相机更容易获得微距拍摄的效果。
我们在数码相机上都能找到一个“微距模式”,微距模式方便用户对离镜头很近的物体进行对焦、拍摄。
在本网站的测评中,我们往往以照相机(不可更换镜头照相机)在微距模式下,被摄物体能清晰填充画面的程度来量度微距能力的强弱。例如,一部照相机的微距模式能在画面中能清晰展现20mm长的物体,另一部却只能展现40mm长的物体,我们就说前者的微距能力较后者强。
镜头(Lenses)
绝大部分小型数码相机都不能更换镜头,这些照相机的镜头是专门为特定的传感器大小制造的。一些准专业级数码相机可以让用户利用焦距转换器延伸变焦范围。由于小型数码相机的传感器面积很小,要达到良好成像效果的话,必需一枚轻巧但高质量的光学镜头,然而能做到这点的小型数码相机并不多见。

300、400、500万象素小型数码相机的典型传感器大小
600万象素数码单反的典型传感器大小
图像稳定器(Image Stabilization)
单镜反光照相机的高端长焦镜头通常安装有图像稳定器。拥有大光学变焦倍数的数码摄像机也往往配有图像稳定器。新型的长焦数码相机也开始安装光学稳定器,如防抖系统。
图像稳定技术通过运用一个可移动的光学元件实现稳定图像的目的。可移动的光学元件通常连接到一个快速的回旋装置上,以报偿照相机在长焦端的高频率抖动(例如拍摄者手部抖动)。佳能EF系列单反镜头以“IS”(Anti-Shake)代表带有图像稳定器,而尼康在尼克尔镜头上使用的是VR(Vibration Reduction)。
通常,图像稳定器可以让用户使用比正常安全快门速度慢2级的快门速度进行手持拍摄,而保持照片清晰。例如当你拍摄某个场景本来需要用到1/500s的快门速度,在开启了图像稳定器后,你可以1/125s(慢4倍)的快门速度进行拍摄,保持照片清晰。图像稳定期往往能在光线较弱的环境下、拍摄运动场景、拍摄微距作品和使用长焦段拍摄中大显身手。
请读者注意:光学图像稳定器与数码图像稳定器(数码摄像机常用)是截然不同的。数码图像稳定期只是通过数码摄像时的象素移动,稳定拍摄画面
焦距系数(Focal Lenth Multiplier)
许多数码单反的传感器比35mm胶卷的面积小,典型的数码单反CCD传感器的斜线长度比35mm胶卷小1.5倍。

典型600万象素数码单反的传感器大小( 43.3/28.1,斜线长度比35mm胶卷小1.54倍)
因此,比35mm胶卷小的传感器只能获得胶卷中央部分的照片信息,导致“视野缺失”。一部35mm的胶卷照相机需要一枝焦距更大的镜头才能达到数码单反传感器的视野范围。35mm胶卷斜线长度与传感器斜线长度的比值就是焦距乘数(FLM)。下面我们以两个例子说明FLM:
例1:数码单反与35mm胶卷照相机使用焦距相同的镜头

胶卷照相机200mm镜头的成像
传感器的焦距系数FLM为1.5,获得的只是35mm照相机以200mm镜头摄得的中央部分,导致“视野缺失”,其等效于35mm照相机300mm镜头拍摄出的图像(200 x 1.5 = 300mm)。月亮的绝对大小没有变化,因为焦距仍然为200mm
例2:数码单反比35mm胶卷照相机使用焦距更短的镜头

胶卷照相机200mm镜头的成像
传感器的焦距系数FLM为1.5,由于使用焦距较短的镜头(133mm,200mm/1.5),数码单反获得的是35mm照相机以200mm镜头摄得的图像的全部范围,其等效于35mm照相机300mm镜头拍摄出的图像(200 x 1.5 = 300mm)。月亮的绝对大小变小,因为使用了焦距较短的镜头。(放大倍率不同)
这意味着如果把一枝19mm的镜头安装在数码单反上(FLM为1.5倍),它产生的视野范围其实只相等于35mm胶卷相机的28mm镜头。然而,这种广角端的弊端有时会转化成长焦端的优势。例如,把一枝200mm的镜头安装在数码单反上,它的视野范围就等效于35mm胶卷相机的300mm镜头-300mm的镜头通常比200mm贵很多。正是因为这种焦距增倍效应,数码单反容易以较短的焦距,获得较大的景深。
数码单反专用镜头
多数的数码单反都能使用传统的35mm镜头。虽然如此,但是这些镜头本来是为35mm胶卷相机而制造的,对于比胶卷面积小的传感器而言,这些镜头太大和太重了。数码单反专用镜头(如Canon的短黑镜头、Nikon DX系列镜头、Olympus 4/3"系统镜头)比传统35mm单反镜头轻巧,因为它们镜头圈的大小只要满足传感器的需要就行了。
小型数码相机上
为了适应面积细小的传感器,创造良好的35mm等效视野范围,小型数码相机的镜头焦距通常比较短。典型的小型数码相机传感器的斜线长度比35mm胶卷小4倍。小型数码相机上标明“7mm”的镜头,其实等效焦距为7mm x 4 即28mm。跟数码单反一样,这些照相机的镜头圈大小只要满足传感器的覆盖范围就可以了,因此它们的镜头很小巧,而且造价便宜。由于小型数码相机的镜头焦距很短,因此它比数码单反和35mm照相机在相同的视野范围内,景深更
焦距(Focal Length)
焦距指镜头中心到焦点的距离,通常以毫米mm量度。照相机镜头把拍摄场景中的光线投射到胶卷或传感器上。可见的视野范围(FOV,Field of View)由镜头覆盖的场景水平和垂直距离决定。面积大的传感器和胶卷拥有更大的FOVs,并且能够记录场景中的更多信息。焦距和FOV通常都是以35mm胶卷为参照的,因为这种格式(35mm)比较常用。

在35mm摄影中,焦距为50mm的镜头称为“标准镜头”,因为没有放大或缩小拍摄场景,拍出来的照片与肉眼看到的范围是一样的(图像角度为46°)。
广角镜头(短焦距)能够让照相机“看得更宽阔”,因为它有一个较大的图像角度;然而,长焦镜头(长焦距)能让照相机“看得更远”,但看到的范围比较窄。以下是一些典型的镜头对应的焦距说明:
35mm格式的焦距对应镜头类型
超广角镜头
24mm - 35mm
广角镜头
50mm
标准镜头
80mm - 300mm
长焦镜头
> 300mm
超长焦镜头
通过调整焦距,拍摄者可以选择以较近的距离或较远的距离拍摄,获得不同的透视感觉。一些数码相机在广角端会出现桶形失真现象,而在长焦端出现针垫形失真。
35mm等效焦距
由于数码相机的传感器比35mm胶卷的面积小,因此数码相机工程师们引入了一个“等效焦距”的概念,把数码相机镜头的焦距转换成35mm的等效焦距,方便摄影爱好者学习研究。
光学变焦与数码变焦
光学变焦=最大焦距值/最小焦距值
例如一枝光学变焦镜头的焦距范围是28-280mm,则它的光学变焦倍数为280mm/28mm,即10倍。这意味着物体在长焦端的大小(280mm)是其在广角端大小(28mm)的10倍。光学变焦不能与数码变焦混淆。
转换器(Converter)
准专业级数码相机往往可以使用转换器,达到延伸变焦能力的目的。转换器是一个安装在镜头前面的适配器,它能扩大拍摄角度或使照相机zoom得更远。例如,在35mm镜头上安装一个0.8倍广角转换器,照相机的广角端焦距就变成了28mm。在100mm镜头上安装一个2.0倍增距转换器,照相机的长焦段就变成了200mm。转换器通常不能在变焦镜头的全焦段中使用,因为在一些不适合的焦段上,转换器会使画面的边缘发虚。同样,在使用转换器后,照相机的闪光灯可能因此不能正常工作。因为转换器会遮挡闪光,造成阴影,或遮挡闪光灯感应器。
色差(Chromatic Aberration)
单镜头的色差
色差(又称为“色散现象”)是由于照相机的镜头没有把不同波长的光线聚焦到同一个焦平面(不同波长的光线的焦距是不同的),或者/和镜头对不同波长的光线放大的程度不同而形成的。色差又可分为“纵向色差”和“横向色差”,色差的程度随着镜头表明玻璃的色散程度不同而有所差异。

纵向色差,不同颜色光线的波长不同,焦距也不同
横向色差,不同颜色光线波长不同,放大倍率也不同。
随着异常颜色线条在照片对比强烈的边缘上出现,我们可以知道照片出现了色散现象。在广角端拍摄时,色散现象特北容易出现。

青边和红边的例子
消除色差

一些特殊的镜头系统(防色散)使用两块或更多块折射率不同的镜片以消除色散现象。可是,这些镜头系统并不能完全消灭色差,色散现象仍然很有可能在广角端拍摄的时候发生。
“紫边”和微型镜头
在色散现象中出现的颜色异常边缘线条通常是紫色的。然而,“紫边”要说明的东西并不仅仅于此。紫边还表示了数码相机在是使用微型镜头导致的一种典型现象。在一幅照片中,紫边比其他色散现象更加显而易见。特别当逆光拍摄或拍摄对比极强烈的物体时,紫边尤其容易出现。高光溢出也是导致紫边清晰可见的原因之一。

紫边的例子
桶形失真(Barrel Distortion)
桶形失真是由镜头引起的成像画面呈桶形膨胀状的失真现象。我们在使用广角镜头或使用变焦镜头的最广角端时,最容易察觉桶形失真现象。当画面中有直线(尤其是靠近相框边缘的直线)的时候,桶形失真最容易被察觉。普通消费级数码相机的桶形失真率通常为1%。与桶形失真相对的是针垫状失真,我们在下面的专题将作详细介绍。

桶形失真使正方形膨胀
桶形失真实例
桶形失真的矫正
我们可以通过Adobe Photoshop等一系列软件,矫正数码相机输出的桶形失真图像,掌握了诀窍以后,难度并不大。
纵横比(Aspect Ratio)
顾名思义,纵横比就是指一幅图像的纵向长度与横向长度的比。纵横比通常以两个整数的比表示,例如横/纵=1.5表示为纵横比,即横:纵=3:2

35mm胶卷、6"x4"印刷品、多数数码单反的纵横比为3:2

多数电脑显示器和小型数码相机的纵横比为 4:3
防抖技术(Anti-Shake)
图像稳定的另一种技术,是以CCD的移动报偿照相机的移动(抖动),也称作“CCD防抖技术”。柯尼卡美能达DiMAGE A2便是应用CCD防抖技术的典型例子。在CCD防抖技术中,传感器(CCD)被安放在照相机内的一个小小的平台上,当照相机抖动时,动作探测器(motion detectors)会命令平台按照抖动方向的相反方向移动,报偿照相机抖动产生的影响。柯尼卡美能达声称,这种防抖技术可以让拍摄者使用比正常安全快门速度慢3级的快门速度进行拍摄,而保持照片清晰。例如你拍摄某个场景本来需要用到1/1000s的快门速度,在开启了防抖功能后,你可以1/125s(慢8倍)的快门速度进行拍摄,保持照片清晰。防抖功能往往能在光线较弱的环境下、拍摄运动场景、拍摄微距作品和使用长焦段拍摄中大显身手。

柯尼卡美能达DiMAGE A2上的防抖系统
定时拍摄(time lapse)
带有定时拍摄功能的照相机可以让用户控制照相机在一定时间后自动拍摄照片,或按一定时间间隔连续拍摄照片,而无需用户直接控制快门。例如,我们可以把带有定时拍摄功能的照相机安放在三脚架上,拍摄花朵盛开或小鸟做巢的动人过程。一些照相机配置的是内置定时拍摄功能,其他照相机把定时拍摄与遥控拍摄结合在一起使用,当然,使用这些功能的时候需要把照相机连接到电脑上。
快门优先(Shutter Priority)
在“快门优先模式”中,用户能够在照相机提供的快门速度范围内,选择需要的快门速度,拍摄照片,照相机会因应该快门速度计算一个最佳的光圈值,保证照片曝光准确。使用快门优先模式能为照片造出特殊效果,例如用慢快门使瀑布或河流的流水模糊,看起来平滑细腻;或者用高速快门凝固运动场景中的瞬间。(详细请看前面的“快门速度”术语)
快门速度(Shutterspeed)
快门速度决定胶卷或传感器的曝光时间。照相机通过控制镜头与胶卷(传感器)之间的机械快门的“一开一合”两个动作来控制快门速度,从而控制曝光时间。例如,快门速度为1/125s的意思就是照相机让传感器(胶卷)曝光1/125秒。电子快门的原理与机械快门相似,不过它是通过控制传感器中的光电二极管来控制快门速度的。有些数码相机的快门是机械快门与电子快门的结合。
快门速度以秒数的分数形式表现,通常快一级的快门速度是慢一级的快门速度的1/2,即曝光时间减半。例如1/2s, 1/4s, 1/8s, 1/15s, 1/30s, 1/60s, 1/125s, 1/250s, 1/500s, 1/1000s, 1/2000s, 1/4000s, 1/8000s等等。然而,慢快门速度通常以秒数表示,例如8s, 4s, 2s, 1s。
拍摄环境决定了最合适的快门速度。不过在这里有一个小小的技巧:运用“1/焦距”秒以上的快门速度能有效防止由于照相机抖动而造成的模糊。当快门速度比这个值低的时候,请你使用三脚架或带光学稳定器的镜头或照相机。如果你想用照相机“凝固”某个动作(例如在运动摄影中),快门速度至少要达到1/250s甚至以上。但是,并不是所有“动作”拍摄都需要高速快门的。如果用户想拍摄一辆运动中的汽车时,你可以通过照相机追随拍摄(照相机移动与汽车移动相对速度相同),把运动中的汽车保持在取景器中间。这样做不仅允许用户使用一个较慢的快门速度拍摄,而且能把拍出背景的动态模糊效果,增加画面动感。

这幅照片以1/500s的快门速度拍摄,凝固了浪花动感的姿态。

以1/125s的快门速度追随拍摄,造成背景动态模糊,速度感强。
准专业级和专业级数码相机通常提供了快门优先模式,允许用户在保持曝光量不变的情况下改变快门速度。
遥控拍摄(Remote Capture)
遥控拍摄是一种可以让电脑与数码相机相连的软件。遥控拍摄有两大优点:首先,数码相机拍摄的照片可以直接记录在电脑的硬盘里面;其次,照片可以直接在电脑的显示器上显示回放,而无需通过小小的LCD显示屏。
测光(Metering)
数码相机的测光系统按照拍摄的环境以不同的测光方式(下面将具体分析)测量光亮度,并计算出一个最佳的曝光值,使照片准确曝光。自动曝光是所有数码相机都带有的标准曝光程序,只要你选择好测光模式,把镜头对准被摄物体,轻轻一按快门,一张曝光准确的照片立即呈现(在多数情况下)。
测光方式指测光系统按环境中的什么信息测光,以什么法则计算合理曝光值。测光方式随着照相机型号和品牌的不同而不同,但多数可分为以下3种类型:
矩阵测光或评价测光
这是一种综合性最强的测光模式,基本能在任何环境中计算出最准确的曝光量。矩阵测光的本质就是把拍摄环境分成一个由多个测光区域组成的矩阵,系统对每个区域进行独立测光,再以一套运算法则计算最佳的曝光值。因此,照相机测光系统的运算法则是决定曝光值的关键,数码相机制造商一般不会对外公布这套运算法则的细节。但是我们知道,这套运算法则通常是根据拍摄环境与一些典型场景的对比来计算合理曝光值的。
中央重点平均测光
这是数码相机最常用的测光模式,几乎所有数码相机的都带有这种测光模式,一些没有测光模式选择的数码相机的默认测光模式也是中央重点平均测光模式。这种测光模式把整个画面中的光线平均测量,但是特别注重中心区域。中央重点平均测光被广泛应用在人像摄影中。
点(部分)测光
点测光让用户对画面中心的被摄物体进行集中测光(一些照相机也可对选定的AF点)。在点测光模式中,招相机只对一小块区域测光,忽略画面中的其他地方。这种测光模式通常用于拍摄剪影效果、微距和拍摄月亮等等。
手动模式(Manual)
在“全手动模式”中,用户能够自由设定光圈大小和快门速度-这意味着完全由用户自己决定曝光量。当你想在一个特殊的环境下拍摄数张曝光量相同的照片时,手动模式将会是你的最佳选择。高端的准专业级数码相机和所有数码单反都会设有全手动曝光模式。在全手动曝光模式中,照相机通常会在光圈快门值旁边显示一个模拟测量值,表示用户现正使用的曝光设定所得出的曝光值与照相机测光系统测出的合理曝光值相差有多远。带有LCD实时预览的准专业级数码相机还会在LCD上显示用户自定的曝光设定将得出的照片曝光效果。
闪光补偿(Flash Output Compensation)
闪光补偿(闪光输出补偿)的目的类似于曝光补偿,就是允许用户对闪光灯输出闪光的强度进行调节。一些手动功能丰富的数码相机为用户提供了范围从-2EV到+2EV的闪光补偿设定,其他只提供“高、中、低”输出设定。当照相机的闪光测量系统不能按照拍摄环境准确输出闪光,导致过曝或欠曝时,闪光补偿就能起到很好的修正作用。
曝光补偿(Exposure Compensation)
虽然数码相机拥有先进的测光系统,但测光系统有时候还是会犯错误的,不准确的曝光会导致照片的欠曝或过曝,因此我们需要一项能调整测光系统曝光误差的功能,而这项功能便是“曝光补偿”。曝光补偿功能通常能在准专业级和专业级数码相机上找到(现在越来越多消费级数码相机也开始配备该功能)。一般的曝光补偿功能为用户提供了-2.0EV至+2.0EV,每0.5或0.3EV为一级的调节。一些数码单反拥有范围更广的曝光补偿调节功能,例如从-5.0EV至+5.0EV。
在使用曝光补偿功能的时候,我们要注意以下方面:曝光补偿增加1EV相等于曝光值(EV)减少1,即进光量增加一倍。假如数码相机的自动模式对拍摄的环境决定使用f/8的光圈和1/125s的快门,感光度(ISO)为100,即13EV,导致照片欠曝(可从柱状图看到),当你使用+1.0EV曝光补偿时,照相机会把快门速度调成1/60s或把光圈调为f/5.6,让增加进光量(12EV)。
当然,当你十分熟悉自己的数码相机测光系统后,你可以在拍摄照片之前调节曝光补偿,免除麻烦。例如当你想拍摄明亮的云彩时,觉得测光系统偏向于使照片过曝,你可以先把曝光补偿值调成-0.3或-0.7EV,以获得最佳拍摄效果。
曝光(Exposure)
曝光指胶卷或传感器吸收的进光量,它由镜头开启的直径大小(光圈)和胶卷或传感器的感光时间(快门速度)共同决定,而曝光的效率是由胶卷或传感器的感光度决定的。
根据上述原理,我们可以推出曝光值(EV)由光圈、快门速度和感光度共同决定。我们把0EV定义为光圈为f/1,快门速度为1s,感光度(ISO)为100时的曝光量。每当传感器吸收的光量减半(例如光圈调小一级或快门调快一倍),曝光值EV就会增加1。例如,6EV中传感器吸收的进光量为5EV的一半。高EV值被用于明亮的环境,在这些环境中,胶卷或传感器只需吸收很少的光,否则照片就会过曝。
下面我们以例子说明。假如你以快门速度为1/125s,光圈为f/8,感光度为ISO 100的参数拍摄,得到的曝光值EV为13。当你把快门速度调成1/250s(曝光时间减半)和把光圈调大一级即f/5.6时,曝光值EV依然等于13。又或者你把快门速度调成1/250s,保持光圈大小不变,但是将感光度调成ISO200,这样也将得出EV=13。但是,增加感光度会增加数码相机成像的噪点和胶卷相机成像的颗粒感。
在自动曝光模式中,照相机按照曝光量的需要组合控制光圈、快门与感光度的值,而这项功能是通过测光系统实现的。一个高的EV值暗示拍摄环境明亮,需要高快门速度、小光圈和/或低感光度,否则照片会过曝。当你使用光圈优先模式时,照相机会按照固定的EV值选择快门速度;而在快门优先模式中,照相机会按照固定的EV值选择光圈值
自动包围曝光(Auto Bracketing)
自动包围曝光是一种通过对同一对象拍摄曝光量不同的多张照片“包围”在一起,以获得正确曝光照片的方法。“自动”指照相机会自动对被摄物体拍摄连续拍摄2、3或5张曝光量在0.3到2.0EV之间的照片(每张照片曝光量不同)。当你不确定曝光是否正确时,可以使用自动包围曝光功能,保证曝光的准确度,提高了照片质素。数码相机上的自动曝光功能,甚至可以让用户把欠曝和过曝的照片合成一幅曝光准确的照片—即使你在拍摄的时候并没有任何一张照片曝光准确。我们可以从以下的例子看到曝光包围在数码相机中的应用。
当你在照相机中选择自动曝光包围功能后,通常可以设定连拍的照片数量(最典型为2、3或5幅)、曝光设定(如0,-,+ 或 -,0,+等等)。请注意曝光设定中的曝光值是曝光补偿的值。
以下是使用曝光包围的一个极端例子,前5张照片的曝光量分别按一级曝光补偿递进。如果不用曝光包围而只用普通曝光模式拍摄照片时,我们只可以得到图3(f/4.0,1/160s)的照片。在下面的例子中,+2.0 EV不被用作合成图片。

f/7.1, 1/306s, -2.0 EV; f/5.6, 1/224s, -1.0 EV; f/4.0, 1/160s, 0 EV

f/3.1, 1/71s, +1.0 EV; f/2.8, 1/39s, +2.0 EV; 合成 -2,-1, 0, +1 EV
一些数码相机还提供了白平衡自动包围功能。
光圈优先(Aperture Priority)
在光圈优先模式中,照相机让用户在镜头的最大~最小光圈范围内选择需要的光圈值,选定后照相机会计算出一个相应的快门速度,让照片准确曝光。当你想控制景深或制造特殊效果时,光圈优先模式就显得非常有用了。由于小型数码相机使用高焦距增倍器,因此即使将其光圈调到最大,也很难得到理想的浅景深效果。
光圈(Aperture)
光圈是一个用来控制光线透过镜头,进入机身内感光面(胶卷或传感器)的光量的装置。光圈开启的大小是由一个可调整的控光装置控制的,该装置的运作原理类似人类眼睛的瞳孔。光圈大小影响曝光量和景深。
跟快门速度一样,光圈值是连续的,光圈每缩小一级,进光量就减少一半。为了达到这个效果,控光装置按1.4(2的平方根)这个因数缩减光圈开启直径。因此,光圈每缩细一级,进光量减半,这个过程是连续的,入下图所示:

根据基本的光学定律,绝对的光圈大小和直径由焦距决定。打个比方,光圈直径为25mm的100mm镜头与光圈直径为50mm的200mm效果是相等的。在上面的例子中,如果你用焦距值除以光圈开启直径值,你会发现无论焦距是多少,计算结果衡等于1/4。因此,把光圈表达为焦距的分数比直接用绝对光圈大小表示更加方便。这些“相对的”光圈值叫做f值(f-numbers/f-stops)。如果你在照相机的镜头桶上看到“1/4”,即表明该镜头的最大光圈值为f/4。
通过上面的说明,我们已经了解:每当光圈收细一级,其开启直径便缩小1.4倍。因此,在光圈值为f/4的下一级(缩小一级)光圈值为f/4 x 1/1.4即
f/5.6。镜头光圈从f/4缩小为f/5.6表示无论当时焦距为多少,镜头进光量减半。现在,我们可以理解镜头上光圈值的意义了:

由于光圈值是焦距的分数,所以越大的f值代表越小的光圈。
最大光圈/镜头速度
一枝镜头的最大光圈又可以叫做这枝镜头的镜头速度。所有摄影爱好者都应该知道,光圈和快门一起控制曝光量。一枝光圈最大值较大(如f/2)的镜头,可以允许使用者以较快的快门速度进行曝光,并保证不会欠曝,因此我们叫它“快镜头”。在拍摄运动物体或在昏暗环境中拍摄时,这类镜头往往能大显身手。
变焦镜头在广角端和长焦端有不同的最大光圈值,例如28-100mm f/3.5-5.6,广角端(28mm)的最大光圈值为f/3.5,长焦端的最大光圈值为f/5.6。这类变焦镜头通常体型较大。而起比较昂贵。
白平衡(White Balance)
色温
多数的光源都不是100%纯白色的,它们都有一个特定的“色温”。例如,正午太阳的光线与纯白色较为接近,而日出与日落时,太阳的光线会偏黄。下面的图表列举了一些常见光源的色温。
光源类型
色温(k)
烛光
1500
白炽灯
3000
日出日落
3500
正午、闪光灯
5500
干净的天空、明亮太阳光
6000
阴天
7000
蓝天
9000
白平衡
我们眼睛观察到的不同光线有着不同的色温。人的眼睛可以随着环境的不同,区分什么颜色是“白色”。然而,数码相机并没有这个能力。数码相机需要一个参考点来定义“白色”,当这个参考点决定后,数目相机便能计算出其他颜色。例如一盏卤素灯照射在白色的墙上时,墙会显黄色,但是墙的本身是白色的。如果数码相机也“知道”墙本来是白色的。它就能准确计算出场景中的其他颜色。
多数数码相机都有自动白平衡功能,在自动白平衡中,照相机通过画面中各种颜色的比例,计算出最适合的白平衡。然而,自动白平衡经常出现失误,特别在没有白色的场景中,照相机找不到白色,不懂得如何计算其他颜色。如下图所示:

照相机的自动白平衡在画面中找不到白色,时画面颜色呆板,不真实
场景非常类似,但这一次照相机的自动白平衡十分准确,因为它在画面中找到了用作参考的白色(白云)
有很多数码相机还允许用户手动调节白平衡,例如提供预设的白平衡选择(日光、阴天、荧光灯、白炽灯……)在我们实际拍摄之前,用户还可以把照相机的镜头对准场景中的某个地方(或一张白纸),自定义白平衡,让照相机找到“白色”,拍摄白平衡准确的照片。
色调范围(Tonal Range)
数码相机的色调范围指描述动态范围的色调数目。动态范围宽不一定色调范围宽,动态范围窄,色调范围也不一定窄,下面的例子正好说明了这个问题:
色调范围宽
色调范围窄
动态范围宽

动态范围窄

传感器的动态范围和色调范围
传感器的动态范围和色调范围是息息相关的。如果一个传感器的动态范围是1000:1,其AD转换器最少有10位,那么它必定会有一个宽阔的色调范围。一个拥有10位AD转换器的传感器能输出大约1,000个不同的色调,当然传感器的动态范围要不小于1000:1-因为传感器符合线性特征。
图像的动态范围和色调范围
当你使用色调曲线调整传感器的线性数据时,你可以看到动态范围和色调范围是不同而且好像是独立存在的,随着使用的色调曲线不同,具体情况也会有所差异。色调曲线可以压缩动态范围、色调范围或两者同时压缩。
当我们以JPEG格式拍摄照片时,照相机会使用对比度高的色调曲线处理照片,这样可能会损失高光和昏暗部分的细节-这是JPEG格式的先天缺憾,如果想避免细节损失,只能用RAW格式记录照片。RAW图像保留了传感器产生的原始图像的整个动态范围,让用户可以通过使用一条适合的色调曲线,压缩动态范围和色调范围,以最悦目的颜色和明亮度输出到显示器上,或进行照片打印。下面的图例说明的是一幅32位浮点图像的动态范围和色调范围被压缩后的效果。
显示器和打印机的动态范围和色调范围-范围压缩
显示器和打印机拥有有限的动态范围。所以我们必须使用一条色调曲线来压缩照片原始数据中的动态范围,使它适应于显示器或打印机的动态范围。这条色调曲线在压缩动态范围的过程中尽量保留显眼的细节。经过这种处理后,显示器或打印机输出的图像才能使人们感到悦目。

A,暗部细节丰富
B,亮部细节丰富
C,暗部和亮部细节结合,但高光与昏暗比 减小
在上图的场景中,阴影部分比高光部分(11级)暗2000倍。如果读者拿自己的数码相机拍摄上面的场景,拍摄出的照片只会有两种可能:图A或图B。在图A中,照相机为了获得良好的暗部细节,曝光时间必须延长,导致高光部分的细节严重缺失,高光部分象素溢出;在图B中,照相机为了获得良好的亮部细节,曝光时间必须缩短,导致暗部的细节严重缺失。在Adobe Photoshop CS2中,你可以把数幅曝光设定不同的照片结合起来,以获得一幅有宽阔动态范围的图像。但是我们之前已经谈过,显示器和打印机的动态范围是非常有限的,那么怎样才能在显示器和打印机上输出动态范围宽阔而且悦目的图像呢??唯一的方法就是压缩。
现在让我们观察图A和图B的柱状图,红色和蓝色的区域分别表示没有缺失的暗部和亮部细节。我们可以通过同时压缩这两个区域的方法,减少图像色调,使其适应显示器或打印机的动态范围。
在实际的拍摄场景中,高光与昏暗比接近2000,为了让显示器和打印机(特别是打印机)输出悦目的照片,高光与昏暗比必定比2000小得多。当在显示器上观察图C时,我们会发现图C具有宽阔的动态范围,因为它看上去就像一幅由照相机一次曝光照出来的、动态范围宽阔的照片,让人感到自然舒服。色调压缩最好在高位数的环境下进行,因为这能避免色调分离的出现。
TIFF图像格式
TIFF (Tagged Image File Format)是一种国际性的图像格式,它适用于绝大部分图像处理软件和图像浏览软件。TIFF的最大特点就是它可以进行无损压缩,TIFF既可以通过LZW或Zip进行内部压缩,又可以通过WinZip等软件进行外部压缩。TIFF支持JPEG的每通道8位单层RGB图像,还支持每通道16位的多层CMYk图像。因此,TIFF通常用作打印和印刷输出的最终格式。
很多数码相机都支持TIFF输出,但由于图像处理器的限制,其输出的TIFF图像通常只有每通道8位的版本。高端的扫描仪为用户提供了每通道16位的TIFF输出选择。从多方面来看,数码相机的TIFF格式输出比不上RAW格式输出。
锐化(Sharpening)
锐化(Sharpening)
常用的照片锐化方法一共有两种,请读者切记这两种方法是不可以混合使用的。照片的光学锐度有镜头和传感器的质量决定;软件锐度其实是模拟光学锐度的效果,通过提高画面的边缘对比度,使照片看上去锐度更高。软件锐化必须在已有照片解像度的基础上进行,不能创造照片细节,只能突出原有细节。
原照片

放大2倍

注释
锐化前边缘较软
锐化后边缘变得锐利
由于过度锐化而产生的晕轮
从上面的例子来看,适度的锐化能让画面的边缘更加干净和清晰。相反,过分的锐化会令物体边缘位置出现一个晕轮,让人看得很不舒服。这种锐化方法通过创造一个白色的外部圆形晕轮(使圆圈边缘附近的浅灰色背景更光亮)和一个黑色的内部圆形晕轮(使圆圈边缘附近的深灰色象素颜色更加暗)来实现锐化的目的。由于白晕轮与黑晕轮之间的对比度,比浅灰色背景与深灰色圆圈的对比度高,因此能给人一个“画面便锐利了”的“错觉”。但是,这种晕轮如果明显出现在照片中,会影响照片的成像效果。然而,这种晕轮往往是非常难以消除的,除非你用RAW格式拍摄照片(见以下内容)。
照相机内锐化
作为照片处理程序的一个默认部分,数码相机会自动对拍摄的照片进行不同程度的锐化,以消除颜色过滤排列装置解码的过程中(该过程会轻微降低画面细节锐度),细节锐利度的损失。然而,过度的照相机内锐化会产生难以消除的晕轮,增加可见锯齿、噪点和其他非自然痕迹。准专业级数码相机和数码单反可以让用户选择照相机内锐化的程度,甚至对图像处理器发出“不进行锐化”的指令。
软件锐化
如果照相机为用户提供了拍摄RAW格式照片的功能,用户可以关闭照相机内的锐化程序,直接把照片传到电脑后再用软件进行锐化。软件锐化让我们能够按照照片输出的目的,自由选择锐化的程度,避免讨厌的晕轮产生。例如,当你想把照片放在显示器上浏览或放在网络上与别人分享的时候,你需要把照片锐度提高,展现照片的精彩细节;当你想把照片打印出来的时候,你只需要轻轻的锐化照片,因为过度的锐化会使印出来的照片看上去不真实。如果你的照相机没有RAW格式输出,或者你只想使用JPEG格式,请尽量使用照相机内锐化,因为电脑上的软件的锐化效果通常比不上照相机内图像处理器的锐化效果。原因之一是照相机内锐化是在照片被压缩成JPEG格式之前完成的,而软件锐化只能对经过压缩的JPEG照片进行锐化,后者的锐化会使JPEG的压缩痕迹更加明显。如果觉得照相机内锐化的效果还不够明显,当然你可以后期用软件再进行锐化。但请读者切记一点:把照片锐化容易,但是要消除过度锐化的痕迹就非常困难了。
感光度(ISO)
传统胶卷感光度称为ASAs,它们随着感光度的数值不同,用法也不尽相同。感光度越低,照片越细腻,颗粒感越弱,但是需要较长的曝光时间,吸收更多的光子量。在户外摄影中,低感光度往往能大派用场;但是在昏暗环境和运动场景中拍摄的时候,为了缩短曝光时间,我们便需要更“快”,颗粒感更重的胶卷,即感光度更高的胶卷。数码相机的感光度ISO原理与此类似,ISO与ASAs都是指感光元件(胶卷或传感器)对光的敏感程度。多数数码相机的感光度默认设定为ISO 100,有的还会低至ISO 50。用户可以把感光度调成200, 400, 800……高端的数码单反甚至有ISO 3,200的设定。当感光度增加的时候,传感器的输出被放大,因此需要的进光量减少。然而,传感器的输出放大的同时,噪点也同时被放大了。感光度高的照片往往颗粒感比较重,这种现象跟胶卷相机一样,但成因不同。读者可以想象一下,使用高感光度的时候就像把收音机的声音调大,音乐的声音当然会更嘹亮,但是由于信号接收不良而产生的“嘶嘶”噪音也自然会增加。随着传感器技术的进步,现在的数码相机在高感光度下的画质表现越来越好,尤其是高端的数码单反,抑止噪点的技术更加成熟。数码相机的感光度调节比胶卷相机方便得多,使用胶卷相机时,如果需要更改感光度,用户必须更换整筒胶卷;而对数码相机用户来说,只需在照相机内进行简单的设置,便能更改感光度设定。
下图说明了不同感光度下的噪点水平,我们可以明显看到:噪点水平随着感光度的增加而提高,以红色和蓝色通道观察,噪点水平的提高最为明显。

ISO 100

ISO 800

ISO 100-红色通道

ISO 800-蓝色通道
解像度(Resolution)
传感器解像度
就是传感器上有效的非插值象素的数目。
图像解像度
一幅数码图像的解像度由组成这副图像的象素数目决定。一张500万象素的图片,通常长2,560象素,高1,920象素,它的解像度即为4,915,200象素。在之前的“象素”专题里面,我们已经知道:用尽照相机的有效象素能拍摄出最高解像度的照片。然而,用插值的方法获取更高解像度,收效不大,但是却占用了更多的储存卡空间。除非储存卡的容量不足,否则无论什么时候,我们都应该使用照相机的最高解像度拍摄,以获得最佳的照片质量,
解像度测试图表:水平和垂直LPH
我们在许许多多照相机的测评中曾经看到过下面的图表,这个图片到底有什么用呢?其实,这是一个照相机解像度测试图表,它是按照PIMA/ISO 12233标准制定的。这是一张设计出色的图表,它不仅能测试水平和垂直的解像度,而且能考验传感器对不同角度图形的反应能力。准备购买数码相机的朋友,可以通过这个解像度测试图表,了解各种照相机的解像度,并进行横向比较。

尼康CP8700的解像度图表,红色区域为放大部分

放大图A。直到“16”这个位置之前,黑白线条清晰,容易分辨。因此,水平的LPH值就是1600。
放大图B。直到“15”这个位置之前,黑白线条清晰,容易分辨。因此,垂直的LPH值就是1500。
水平LPH指以水平轴(x轴)的方向观察,在整张照片能看得清楚的垂直线条的数目。在上面的放大图A中,我们可以看到9条黑色线和8条白色线相间,在“16”这个位置上,线条仍然清晰。但是到了“17”这个地方,黑线和白线变得越来越难以区分。放大图A中“16”的位置一共有17条直线(9+8),而这17条直线的宽度正好是26个象素的宽度。由于CP8700的样张高度为2,448象素,每个象素高度涵盖的垂直线条数目就是2,448/26*17或者说样张的水平解像度就是1,600 LPH。因此,解像度测试图表上的“16”表示样张的高度可以涵盖1,600条线条,即1,600LPH(per picture height)。
同理,垂直LPH指以纵轴(y轴)的方向观察,在整张照片能看得清楚的水平线条的数目。放大图B告诉我们,样张的垂直解像度大约是1,500 LPH。
由于解像度对图像高度来说是“规格化”的,因此我们可以通过解像度测试图表,对比成像纵横比不同的数码相机的解像度高低。
正是由于照片高度的“规格化”,我们可以通过照片纵横比,由水平LPH推出垂直线条的绝对值,或由垂直LPH推出水平线条的绝对值。例如,垂直线条的绝对值等于水平LPH乘以纵横比。在上面CP8700的例子里面,我们知道水平LPH为1,600,照相机成像纵横比为4:3,于是样张的垂直线条的绝对值通过计算可得:1,600 x 1.333 = 2,133。
聪明的读者看到这里一定会发现:3,200,000(2,133 x 1,500)明显比样张的解像度8,000,000 (3,264 x 2,448)低。其实原因很简单,因为数码相机传感器的颜色过滤排列装置需要对信息进行插值计算,此外,许多照相机的防锯齿滤镜也需要插值计算。然而,在前面提到的Foveon传感器中,图像的解像度与传感器解像度比较接近。光学系统的限制使很多数码相机不得不使用一块小小的传感器来获得锐利的图像,这种做法同样会影响图像的解像度。
5°对角线LPH
放大图C为5°对角线的LPH,从图表我们可以读出这个LPH值为1000

放大图C:黑白5°对角线在“10”这个位置之前能清晰区分,“10”也是图表中的最大值。因此CP8700的5°对角线LPH为1,000+。
极限LPH值
极限LPH值表示在该LPH值的刻度上,黑白线条的开始混合成灰色,两种线条难以区分。

放大图D:在“18”这个位置附近,黑线和白线混合成灰色,因此垂直极限LPH值为1,800。
RAW图像格式
在开始这个专题之前,笔者在这里首先说明一点:RAW并不是一个英文缩写,RAW就是RAW,中文解释是“原材料”或“未经处理的东西”。RAW文件包含了原图片文件在传感器产生后,进入照相机图像处理器之前的一切照片信息。用户可以利用PC上的某些特定软件对RAW格式的图片进行处理。
RAW格式的储存和优势
通过对颜色过滤排列的专题的了解,我们应该知道传统的传感器中,每个象素只负责获得一种颜色。每个象素承载的数据通常有10或12位(12位最常用),而这些数据就能储存到RAW文件里面。照相机内置图像处理器通过这些RAW数据进行插值运算,计算出三个颜色通道的值,输出一个24位的JPEG或TIFF图像。

RAW(10或12位)

红色通道(8位)
绿色通道(8位)
蓝色通道(8位)
TIFF或JPEG(24位)
虽然TIFF文件保持了每颜色通道8位的信息,但它的文件大小比RAW更大(TIFF:3×8位颜色通道;RAW:12位RAW通道)。JPEG通过压缩照片原文件,减少文件大小,但压缩是以牺牲画质为代价的。因此,RAW是上述两者的平衡:既保证了照片的画质和颜色,又节省储存空间(相对于TIFF)。一些高端的数码相机更能输出几乎是无损的压缩RAW文件。
RAW的适用性
许多图像处理软件可以对照相机输出的RAW文件进行处理。这些软件提供了对RAW格式照片的锐度、白平衡、色阶和颜色的调节。此外,由于RAW拥有12位数据,你可以通过软件,从RAW图片的高光或昏暗区域榨取照片细节,这些细节不可能在每通道8位的JPEG或TIFF图片中找到。
RAW的弊端
RAW有一个明显的弊端:随着照相机牌子和型号的不同,它们输出的RAW格式也不同。用户在处理RAW格式图片的时候必须使用厂家提供的专门软件。这为图像处理带来了诸多不便。此外,相对于JPEG和TIFF格式的图片,打开和处理RAW文件要耗费更多的时间。为了解决这个问题,有的数码相机可以让用户拍摄照片的时候同时以RAW与JPEG格式储存照片。随着照相机图像处理速度越来越快,记忆卡容量越来越大而且越来越便宜,上述的做法将不再麻烦了。同时记录JPEG和RAW格式照片,可以让用户使用常规的图像处理软件组织和编辑照片(JPEG);当需要获得处理精细的照片或需要改善照片缺憾(如白平衡不正确和高光/暗部细节缺失 )的时候, 用户可以使用RAW解决问题。除此以外,现在越来越多第三方软件制造商制造一些兼容性强的图像处理软件,让多个品牌、多个型号的照相机都能使用同一个软件处理其输出的RAW照片,解决RAW的兼容性问题。Adobe Photoshop CS就是其中一个例子。然而,Adobe Photoshop CS并不能像厂家的专门软件那样,提供全面的RAW处理设定。兼容性不够强仍然是限制RAW格式发展的最大障碍。
色调分离(Posterization)

天空平滑的色调级数
带状色调分化,缺乏足够的色调,柱状图的“柱”不是紧密相连
当我们在低位数环境(如每通道8位的模式)进行图片处理,如色调转换时,一幅照片上的某个区域可能只由少数有限的色调级数描述,这就形成了清晰的柱状图带状分布,或称为“色调分离”。
降噪技术(Noise Reduction)
在过去的几年里面,数码相机工程师们不断研究降低噪点水平的方法。降噪技术的关键是在不影响照片细节、画质的基础上,减少噪点的出现。早期的免费降噪软件往往以牺牲细节和画面锐度为代价,使画面变得平滑,减少噪点,但这个方法让照片看起来像水彩画一样,缺乏细节。
下面的放大图说明了各种降噪方法对照片的影响,照片是用准专业级数码相机拍摄的。降噪的结果用彩色放大图和红色通道放大图表示(放大4倍)。如果读者的显示器难以观察到原图的噪点,那么请看红色通道的放大图:
原图
失败的降噪
成功的降噪
红色框区域放大4倍

请留意蓝色天空中的红色噪点,在红色通道观察特别明显
失败的降噪能去掉噪点,但是把屋顶边缘弄模糊了。
成功的降噪不但去掉了噪点,而且让边缘保持了原来的锐度。
原图
失败的降噪
成功的降噪
红色框区域放大4倍

蓝色天空的噪点在红色通道中非常明显
失败的降噪以波浪形的样式消除噪点
成功的降噪不使用波浪形样式降噪,并且保留一些“颗粒”,保持照片锐利度。
JPEG压缩与降噪

JPEG以高画质压缩时压缩产生的正方形区域难以察觉。由于噪点也属于画面的细节,降噪会对JPEG的画质产生影响,JPEG的正方形区域变得更加清晰可见。为了避免以上情况出现,我们只好以RAW格式编辑图片。此外,降噪对JPEG画质的影响随着软件的不同而不同,Adobe Photoshop CS中降噪对画质的影响就相对比较小。
长时间曝光降噪

原图

全黑区域

降噪处理
长时间曝光会产生“黏附象素”噪点,在全黑的区域,噪点尤其明显。现在很多新型的数码相机都带有内置降噪功能,消除长时间曝光产生的噪点。就算把新型数码相机的降噪功能关闭,长时间曝光所产生的噪点都会比上图少,因为上图是用老式的数码相机拍摄的。
噪点/噪音(Noise)
成因:传感器噪点
数码相机传感器中的每个象素上都有一个或者更多光电二极管,光电二极管把落在象素上的光子转化为电子信号,然后计算出颜色值和其他值,最终构成一幅完整的图像。如果同一个象素在同一个进光量下曝光数次,该象素得出的颜色值可能会不尽相同,而这些微小的差异就形成了传感器的噪点。就算在没有光进入传感器的情况下,传感器本身的电子运动也会产生一些信号,就好像把音响设备打开而不播放音乐时,我们听到的“嘶嘶”声……这些额外的信号便是噪音。传感器出现噪音是正常的,因为象素在多次感光后,表面温度会上升,温度上升使光电二极管工作异常,产生噪音。这种噪音被称为“本底噪音”。象素的输出一定要比本底噪音强,才能表达其含有的信息。
后果:图像噪点
数码图像的噪点在相同的表面上(如蓝天、阴影……)最为明显,噪点通常表现为单色颗粒状,类似于胶片的颗粒(亮度噪点)和颜色波纹(颜色噪点)。我们在上面已经谈过,噪点随着温度的上升而增加。其实,噪点还受感光度的影响,小型数码相机的颜色噪点正正体现了这一点(下面的图D)。此外,象素面积越小,产生噪点的机会越多-这就是小型数码相机照出来的相片噪点较多的原因(相对于数码单反)。专业级照相机通常拥有高质量的象素和强大的图像处理器,把噪点水平降到最低,甚至在低感光度下没有噪点出现。噪点在红色和蓝色通道上比较显眼,相反,在绿色通道上就不那么容易察觉了。因此,以下图表中的图片以红色通道表示噪点,方便我们分析不同的噪点水平。
蓝天的放大图
A
B
C
D
E
RGB

红色通道

照相机级数
专业级
准专业级
准专业级
准专业级
C图经降噪处理
照相机类型
单反
单反
小型机
小型机
象素大小




感光度
100
200
100
800
Red Ch. St. Dev.
1.8
2.5
5.6
22.6
1.4
以上红色通道的实例图片很好的说明了不同噪点水平的差别,我们可以看到C图和D图的噪点水平明显高于A,B,E图。E图是C图经过降噪处理后所得的图片,从E图可以看出降噪功能可以有效的减少噪点。
长时间曝光中的“黏附象素”噪点

这是另外一种噪点,通常伴随着长时间曝光产生(1妙以上),这些噪点看上去像一些颜色点,面积比象素大,我们称之为“黏附象素”或“热象素”噪点。随着降噪技术的不断进步,长时间曝光噪点在新型的数码相机中已经越来越不明显了
摩尔纹(Moiré)
如果数码相机的解像度不能支持显示被拍摄物体的更多细节,波浪形的摩尔纹便会产生(如放大图A所示)。显示同样场景的放大图B中并没有产生摩尔纹,因为拍摄图B的照相机比拍摄图A的照相机拥有更高的解像度。防锯齿滤镜能有效减少摩尔纹的产生,但它同时会降低画面的锐利度。

A,摩尔纹

B,高解像度时没有摩尔纹
杂乱的非自然痕迹
摩尔纹有时候会导致照相机内部的图像处理器产生杂乱的非自然痕迹。

杂乱的非自然痕迹
JPEG图像格式
JPEG(Joint Photographic Experts Group)是最常用的数码图像格式。JPEG的适用范围十分广泛,包括全球范围内的网页浏览器、图像处理软件等等。JPEG格式应用于数码相机照片时,它还可以把照片文件大小压缩至10%至20%。相对于未经压缩的原图像,JPEG的画质下降和细节损失并不明显。
理论概括
简单的说,JPEG把图像的信息(颜色和其他细节信息)重新编排,其中颜色压缩比细节压缩的程度大,因为我们的眼睛对细节改变的敏感程度比颜色改变高。然后,JPEG把细节的信息分类为细致的细节和粗糙的细节。由于我们的眼睛对粗糙的细节变化比较敏感,所以细致的细节会被丢弃。JPEG正是通过一系列复杂的数学运算和压缩方法,在不严重损害画质的情况下,压缩图像大小。这些数学和压缩方法比较复杂,没有相关知识的读者可能觉得晦涩难懂,因此我们在术语表里面也没有记载这些内容。有兴趣的读者可以参阅更专业的图像处理书籍和文章。
实例
JPEG在图像文件大小和图像画质之间取得了一个很好的平衡。JPEG在压缩图像时,把图像分为一个个正方形区域处理,区域大小为64象素(8 x 8),每个区域都是独立压缩的。在压缩程度不大的情况下,各个区域的边缘存在着“头发状”的非自然痕迹;当压缩程度逐渐增大,这些痕迹越来越明显,我们甚至能看到并分辨出各个区域。详细请看以下的例子,这些图片的放大因数为2。

压缩画质为100%的JPEG图像与原图像难以分辨,但是JPEG的文件大小只是原图像的1/6。

压缩画质为80%的JPEG图像,画质依然优秀(切记上图是放大两倍后的图像),而它的文件大小只是原文件的1/10。请留意画面中黄色蜡笔的边缘有点模糊褪色。多数的数码相机为用户提供JPEG压缩程度的选项,而其中的“最高画质JPEG”画质水平往往高于80%。

压缩画质为60%的JPEG图像。如果读者细心观察,你会发现JPEG的压缩区域和区域之间的非自然“头发状”压缩痕迹。虽然画质有所下降,但60%压缩画质的JPEG已经用于网页上已经足够了。它的大小是原文件大小的1/20。

压缩画质为10%的JPEG图像,JPEG压缩区域清晰可见,画质明显下降。这种低画质的JPEG图像唯一的用处就是让我们了解JPEG的压缩原理(高画质JPEG难以看到压缩区域),当然我们在正常情况下不会把图像压缩成得如此厉害。
实用小技巧
我们在编辑图像的时候,最好把“中间图像”(例如TIFF、PSP和PSD等)储存起来,以备以后使用。假如你直接把一幅图像存为JPEG格式,然后把文件关闭,再打开,以相同的压缩画质设定把图像再储存一次……图像并不会变小,但是图像画质会进一步下降。因此,我们应该在处理完图片后,才对图片进行压缩。
数码相机通常都会有JPEG压缩画质选择,例如优秀、中等、基本……除非你使用RAW或TIFF格式拍摄,否则请使用最佳的画质设定。对部分数码相机而言,即使选择最佳画质压缩,它对图片的压缩程度依然很高。
锯齿现象(Jaggies)
锯齿是指数码图像中从斜线和物体边缘可以看到的一“级”一“级”不平滑的线条。我们也称其为“混淆现象”,线条呈一级一级的现象(锯齿现象)是由象素为正方形的本质决定的。
增加解像度可以减少可见的锯齿
随着传感器或照片的解像度提高,可见锯齿会变得越来越不明显。以下是一幅放大的鲜花与蓝天交接的场景,它是不同数码相机在不同解像度的情况下拍摄。低解像度的数码相机使锯齿清晰可见。当我们从A到D增加照片解像度时,锯齿越来越不明显,在图D中,锯齿几乎难以察觉。但是当图D被放大时,锯齿仍然后出现(图E)。

A,76,800象素

B,307,200象素

C,120万象素

D,500万象素

E,D中的红色区域,放大8倍
防锯齿功能减少可见锯齿
数码相机其实拥有与生俱来的防锯齿功能,因为描述物体边缘的象素会从边缘两边的物体收集信息。在以上的例子中,描述花朵黄色边缘的象素同时会收集一部分蓝色天空的信息,使象素的值介于黄色和蓝色之间。防锯齿功能使图像中物体的边缘比没有防锯齿的理论(图F)边缘较“软”,即较平滑。

E,D中的红色区域,放大8倍

F,没有防锯齿
如果传感器有颜色过滤排列装置,图像处理器会利用周围象素的信息对边缘象素进行计算插补,消除锯齿。这也是另外一种防锯齿方法。
锐化图像会令锯齿明显
锐化图像会增加边缘的对比度,使锯齿现象更加明显,读者可以在“锐化”专题看到关于这个问题的详细介绍。在下图中,屋顶与天空交接的边缘锯齿明显,正是因为边缘的对比度由于锐化而变得强烈。

插值(Interpolation)
插值(Interpolation/resampling)是一种图像处理方法,它可以为数码图像增加或减少象素的数目。某些数码相机运用插值的方法创造出象素比传感器实际能产生象素多的图像,或创造数码变焦产生的图像。实际上,几乎所有的图像处理软件支持一种或以上插值方法。图像放大后锯齿现象的强弱直接反映了图像处理器插值运算的成熟程度。
下面的例子是一幅106*40的图像放大成450%的效果:

最接近原则插值(Nearest Neighbor Interpolation)
最接近原则插值是最简单的插值方法,它的本质就是放大象素。新图像的象素颜色是原图像中与创造的象素位置最接近象素的颜色。如果把原图像放大200%,1个象素就会被放大成(2*2)4个与原象素颜色相同的象素。多数的图像浏览和编辑软件都会使用这种插值方法放大数码图像,因为这不会改变原图像的颜色信息,并且不会产生防锯齿效果。同理,在实际放大照片中这种方法并不合适,因为这种插值会增加图像的可见锯齿。

双线性插值(Bilinear Interpolation)
在双线性插值中,新创造的象素值,是由原图像位置在它附近的(2 x -2)4个邻近象素的值通过加权平均计算得出的。这种平均算法具有放锯齿效果,创造出来的图像拥有平滑的边缘,锯齿难以察觉。

双三次插值(Bicubic interpolation)
双三次插值是一种更加复杂的插值方式,它能创造出比双线性插值更平滑的图像边缘。请读者留意下图中的眼睫毛部分,在这个地方,软件通过双三次插值创造了一个象素,而这个象素的象素值是由它附近的(4 x 4)个邻近象素值推算出来的,因此精确度较高。双三次插值方法通常运用在一部分图像处理软件、打印机驱动程序和数码相机中,对原图像或原图像的某些区域进行放大。Adobe Photoshop CS 更为用户提供了两种不同的双三次插值方法:双三次插值平滑化和双三次插值锐化。

双三次插值

(1)双三次插值平滑化 (2)普通双三次插值 (3)双三次插值锐化
不规则碎片形插值(Fractal interpolation)
不规则碎片形插值通常被应用于图像的放大倍率很大的情况(例如制作大幅印刷品)。它能够让放大后的图像无论从形状、边缘、颜色都较接近原图像,而且减少照片的模糊程度,效果比双三次插值法还要好。读者可以把下图于上面的图片比较,就能知道不规则碎片形插值法的优势:

当然,除了上述的四种插值方法外,还有其他的插值方法。但是其他的插值方法并不常用,而且它们需要更复杂和成熟的图像处理(放大)技术支持。作为非专业人士,我们是不可能具备这些技术的。
数码变焦(Digital Zoom)
光学变焦使照相者能在照相机镜头的最小与最大焦距之间作出选择。消费级和准专业级数码相机常常还带有数码变焦,下面我们就已一张500万象素准专业级数码相机拍出来的照片为例,谈谈数码变焦。

A,用31mm镜头拍摄的场景

B,用50mm镜头拍摄的场景
把焦距从31mm改变为50mm(50/31=1.6X光学变焦),我们看到的照片所覆盖的场景变小了。在图B中,红色框内的区域就是图A的场景。在两幅图片中,照相机都会为500万象素的照片记录500万象素的信息。

C,1.6倍数码变焦,使解像度下降

D,1.6倍数码变焦所得图像
1.6倍数码变焦后的图像只会用到1,600 x 1,200象素的信息,而丢弃剩下的信息(2,560/1.6=1,600 and 1,920/1.6=1,200)。在图C中,照相机捕捉到的场景大小跟图A是相同的,但是图C只用到500万象素中的200万象素!如果数码相机有解像度为 1,600 x 1,200 的拍摄选项,拍摄的照片就会被保存为200万象素的图像。因此我们看到经过数码变焦后的图D,解像度其实只有200万象素,清晰度明显下降。在数码变焦中,照相机图像处理器没有创造额外的信息,所以图D的画质明显比图B低。
到底我们应否使用数码变焦?
既然经过数码变焦后的图像画质会明显下降,那么我们还应不应该使用它呢?如果你的目的是获得图B中的图像信息,使用50mm的焦距当然是最佳选择。但是如果你的照相机只有31mm(或者你已经把光学变焦杆拉到最长焦端,然而你还想zoom得更远),你可以有以下三个选择:
我们推荐的做法是把数码变焦关掉,以照相机的最高象素拍摄,拍摄后再按照你的需要在电脑上修整、放大图片。
如果你的500万象素照相机有输出200万象素照片的选项,就把数码变焦打开,使用1.6倍数码变焦。解像度为1,600 x 1,200的照片会被储存到记忆卡内,而这张200万象素的照片就记录了200万象素的信息。
我们最不推荐使用1.6倍数码变焦的同时而500万象素输出。因为这时候不仅占用了较多的储存卡空间,而且输出照片的后期可调整性大大降低。我们可以想象:把200万象素的信息(如图C)放大成500万象素的图片(如图D),效果是多么糟糕。
最后,我们应该在使用数码变焦的时候谨记一点:数码变焦并不能创造镜头捕捉不到的细节,数码变焦的成像与光学变焦的成像是无法相比的。
色彩空间(Color Spaces)
RGB加色法(Additive RGB Colors)
人类肉眼中的锥形细胞对红、绿、蓝(RGB)三种颜色最为敏感。我们感知到的其他颜色都是由这三种颜色按不同比例混合所得的。电脑显示屏发射出红、绿、蓝三种颜色的混合光线,产生不同颜色。例如,红色和绿色混合产生黄色;红、绿、蓝三原色混合产生白色。请看以下的图表:

RGB加色法
CMYk减色法(Subtractive CMYk Colors)
一件印刷品通过反射落在其身上的光线,间接地让我们看到它的颜色。例如,一张黄色的纸会吸收白光(自然光)中的蓝色部分,反射红色和绿色部分,因而显出黄色。这种做法跟显示器直接发出红色和绿色光线而产生黄色的效果是非常相似的。打印机通过青色(Cyan),洋红(Magenta),黄色(Yellow)墨水的不同比例混合,创造出其他不同的颜色。CMYk的原色结合并相减,得产生黑色。但实际上打印机会用到黑色的墨水,加强黑色的效果。因此,CMYk最后的“k”就是代表黑色(black)。

CMYk减色法
LAB和Adobe RGB (1998)颜色   由于技术的限制,显示器和打印机并不能输出我们肉眼能看到的所有颜色,这些颜色就是LAB颜色。通过下图,我们可以看到LAB颜色以马蹄铁状分布。一般电脑显示器能观察到的颜色就是sRGB(加色)颜色,打印机输出的就是 CMYk(减色)颜色。CMYk颜色有多个种类,这些种类随着输出设备的不同而有所不同。
我们在下图可以看到,不是所有颜色都可以由显示器或打印机输出的。一些高端的数码相机让用户在 Adobe RGB (1998)的模式下拍摄, Adobe RGB的颜色分布范围比sRGB和CMYk大。因此,它们输出颜色更丰富的图像。但我们不能忘记,绝大部分的显示器只支持sRGB颜色。

记忆卡/储存卡(Storage Card)
数码相机的记忆卡相当于传统相机的胶卷。 它是数码相机内的可移动设备,用于保存图象。记忆卡随着数码相机市场的飞速发展而不断更新,并遵从以下的发展趋势:
更大的容量(以GB计)和更快的读写速度,有利于提供更高图象的清晰度和以无压缩的RAW格式输出图片。
每MB或每GB的单位价格日渐便宜。
为适应越来越小的数码相机,记忆卡体积也随着缩小。
储存卡的进步是有目共睹的,唯一令人遗憾的就是记忆卡类型迅速增多,使到记忆卡在不同的相机,读卡器,或其它设备(如PDAs,MP3播放器等)中使用缺乏统一性。下面的图表是多种记忆卡体积的比较:

各种记忆卡的体积(mm)
CompactFlash II / Microdrive- 42.8 x 36.4 x 5.0= 7,790
CompactFlash I -42.8 x 36.4 x 3.3= 5,141
Memory Stick- 50.0 x 21.5 x 2.8 =3,010
Secure Digital -32.0 x 24.0 x 2.1 =1,613
SmartMedia -45.0 x 37.0 x 0.8 =1.332
MultiMediaCard- 32.0 x 24.0 x 1.4= 1,075
Memory Stick Duo -31.0 x 20.0 x 1.6= 992
xD Picture Card -25.0 x 20.0 x 1.7= 850
Reduced Size MultiMediaCard -18.0 x 24.0 x 1.4 =605
CF卡
CF卡是一种可靠的记忆卡,可以与多种设备兼容。与其它类型的记忆卡相比,CF卡在容量方面也占据着优势。它有着2.2G以上的容量,要求你的相机必须支持FAT32格式.。CF卡有type I 和type II 两种类型,区别主要在于厚度(3.3mm和5.0mm)。type I 广泛用于闪存,而type II 则用于微型硬盘。
微型硬盘
微型硬盘是IBM的伟大发明,使用type II 的CF卡,特别提供更为便宜的单位容量价格。正因为微型硬盘含有可移动的部分,这意味着它需要使用更高电量的电池,高耗电产生高热量(结果是引起更多噪音)并且硬盘可能会因为过热而运作不正常。
SM卡
SM卡的面积比CF卡大,但比CF卡薄。SM卡容易碰坏,也没CF卡可靠。SM卡正逐渐被市场淘汰,因为事实上已经没有新的数码相机支持这类型的记忆卡了。
索尼记忆棒
记忆棒是索尼公司首创的一种记忆卡,现在也有其它公司进行生产,例如Lexar Media。而主要的障碍是市场上很少数码相机适用这一类型的记忆卡,尽管这一数字正逐渐增加。因此,如果你以后买了一台其它牌子的数码相机,,你的记忆棒也不一定适用。记忆棒的单位容量的价格相对比较贵,因为在市场上它的竞争较小。尽管记忆棒的容量正不断增加,但在最大容量方面它始终落后于CF卡。现在市场上存在着几种不同类型的记忆棒,例如:有选择功能的索尼记忆棒,Sony Memory Stick Pro, Sony Memory Stick Duo, 和Sony MagicGate.
SD卡
由SDA开发的SD卡,是一类精密的记忆卡。允许高速数据传输;并有内置安全功能,增强了数据交换时的安全性(包括音乐版权的保护)。这些优势使得SD卡在价格上高于类似的MMC卡。稍后我们将对MMC卡作进一步的介绍。就像软盘一样,在SD卡旁边也有一个小小的“读写保护”开关。
MMC卡
由MMCA (MultiMediaCard Association)开发的MMC卡与SD卡有着相同的面积,但比SD卡薄0.7mm,少了两个插脚。硬件形式的MMC卡适用于SD卡的插槽,大多数(但不是全部)SD设备和数码相机都接受MMC卡。 市面上主要有两种类型的MMC卡:SecureMMC(类似于SD卡)和Reduced Size MMC,请读者在购买之前要检查你的MMC卡是属于哪一规格。
xD卡
XD卡是另一种针对超小型的数码相机的记忆卡,由奥林巴斯,富士和东芝公司生产。
其它类型
一些旧类型还包括软盘和PCMCIA卡。现已较少有支持3英寸的CD-R或RW的设备的记忆卡已经比较少见了。一些低挡次的数码相机没有可移动的记忆卡,但有内置内存。
传感器大小(Sensor Sizes)

典型3、4、5百万象素小型数码相机的感应器大小

典型6百万象素数码单反的感应器大小
上图形象的表示了典型数码相机传感器与35mm胶片大小的比较。数码单反的传感器一般比较大,它们基本能达到胶片的40%的大小,有的甚至达到100%-即与胶片等大。小型数码相机虽然象素可能与数码单反相若,甚至俾数码单反还要高,可是因为小型dc每个象素所占的空间比数码单反小得多,所以它的画质(特别是噪点控制与动态范围)无法与数码单反相提并论。
传感器类型
当我们谈到传感器类型时,经常会用一些分数表示:例如1/1.8" 或 2/3",这些数值比传感器的实际直径大。这种分类是由50年代电视影像管的一套标准演变过来的。当时最常用的影像管大小为1/2", 2/3"等。这个大小所指的并不是传感器区域的对角线长度,而是指影像管外玻璃壳的长度。工程师们迅速发现像平面的可用区域为特定大小的三分之二,并没有特别原因。但是这项不成文的约定却被保留了下来。其实图像圈直径、传感器大小之间并无任何关系,“三分之二”只是一种习惯而已。

常见图像传感器大小
在以下的表格里,“Type”代表传感器的特定类型,“Aspect Ratio”代表传感器的高度与宽度比,“Dia.”指管直径,“Diagonal / Width / Height”是传感器实际工作区域的大小。
传感器大小(mm)
Type
Aspect Ratio
Dia. (mm)
Diagonal
Width
Height
1/3.6"
4:3
7.056
5.000
4.000
3.000
1/3.2"
4:3
7.938
5.680
4.536
3.416
1/3"
4:3
8.467
6.000
4.800
3.600
1/2.7"
4:3
9.407
6.721
5.371
4.035
1/2.5"
4:3
10.160
7.182
5.760
4.290
1/2"
4:3
12.700
8.000
6.400
4.800
1/1.8"
4:3
14.111
8.933
7.176
5.319
2/3"
4:3
16.933
11.000
8.800
6.600
1"
4:3
25.400
16.000
12.800
9.600
4/3"
4:3
33.867
22.500
18.000
135.000
35mm胶片
3:2
n/a
43.300
36.000
24.000
以下是一些常见数码相机的传感器大小比较:
照相机型号
传感器类型
象素
传感器大小
Konika Minolta DiMAGE Xg
1/2.7" CCD
3.3 million
5.3 x 4.0 mm
PowerShot S50
1/1.8" CCD
5.0 million
7.2 x 5.3 mm
Nikon Coolpix 8700
2/3" CCD
8.0 million
8.8 x 6.6mm
Olympus C-8080 Wide Zoom
2/3" CCD
8.0 million
8.8 x 6.6mm
Sony DSC-828
2/3" CCD
8.0 million
8.8 x 6.6mm
Konica Minolta Dimage A2
2/3" CCD
8.0 million
8.8 x 6.6mm
Nikon D70
CCD
6.1 million
23.7 x 15.6 mm
Canon EOS-1Ds
CMOS
11.4 million
36 x 24 mm
Kodak DSC-14n
CMOS
13.8 million
36 x 24 mm
以LCD作取景器
小型数码相机把LCD作为取景器使用,让用户能够观看LCD上生动的画面并且捕捉精彩一刻。数码相机LCD的尺寸基本上在1.5英寸~2.5英寸之间,象素在120,000~240,000之间。一些优秀的LCD会在表面或屏幕后面装上防反光薄膜,让用户能在强烈的日光下仍能清晰的观看LCD。还有一些LCD安装了折合和可旋转装置,这样不仅保护了LCD,而且让用户能轻松的进行高角度和低角度拍摄。部分数码相机(特别是长焦数码相机)更增添了一个0.5英寸左右的电子取景器(EVF)辅助LCD使用,这个小型取景器模仿了数码单反的TTL光学取景器设计。然而,数码单反的LCD是不作取景器用途的,它只提供了浏览和更改照相机设定的功能。

可旋转LCD

DSLR的固定LCD
以LCD观看照片回放
LCD液晶显示屏体现了数码摄影的一大优势-让摄影者在拍摄照片后可以立即浏览照片。虽然如此,但仅仅用12万~24万象素的LCD观看数百万象素的数码图片明显是不足够的,用户无法看清楚照片是否足够清晰和是否需要重拍。不是所有数码相机都提供了照片放大功能,而且放大功能使用起来并不十分方便。有些照相机还为用户提供了简单图片编辑功能,包括旋转、重置图片大小、剪切视频文件等等。在照片回放模式中,用户也能够选择索引模式,照片以缩略图显示在LCD上,方便用户查找。

除了简单的照片回放以外,许多照相机能让用户在照片回放的同时查看EXIF资料,浏览柱状图,找出过曝区域等。
以LCD操作菜单
通过数码相机上的按钮,LCD也能被使用于显示菜单操作,用户可以同时调整LCD本身的亮度和颜色设定。在数码单反的机身上部或后部还会装有一个或更多的单色LCD(耗电量较少),以显示光圈快门等最重要的设定。

LCD上的菜单系统

单色LCD,提供电池电力、记忆卡状态、曝光、对焦模式、白平衡等等资料显示。通常用户只要按一个键就能使该LCD的背灯开启。
高速连拍(Burst/Continuous)
高速连拍模式是数码相机优势的体现,它能让摄影者一张紧接着一张没有停顿的拍摄数张照片,这种功能通常较少使用在传统胶卷照相机上,只有配备特制小型马达的胶卷单镜反光相机才具有连拍功能。根据照相机的类型和型号不同,各种照相机的最高连拍速度(fps)和最多连拍张数是不同的。最高连拍速度(fps)由快门速度和照相机图像处理速度决定。最多连拍张数由缓冲器的大小(上文已具体谈及)和记忆卡读写速度决定。
随着科技不断发展,数码相机的每秒最多拍摄张数(fps)和最多连拍张数不断增加,连拍功能变得越来越强大。当然,轻巧型数码相机的连拍能力比准专业级数码相机弱,准专业级数码相机又比专业数码单反弱。通常在高速连拍模式中,轻便型数码相机每秒最多拍摄1~3张照片,每次连拍最多拍摄10张照片,然而,专业数码单反每秒最多拍摄7张(以上)照片,每次连拍能拍摄数十张JPEG和RAW格式的照片。一些更先进的专业级照相机甚至允许摄影者先以较慢速度继续进行连拍,然后突然转到高速(全速)连拍,直到记忆卡被写满图片数据为止。
缓存(Buffer)
当光线经过快门进入感应器后,照片的数据就会在照相机内被快速处理并写到储存卡内。数码相机内的缓冲器由RAM记忆体组成,它所起的作用就像PC的内存,在数据未写入记忆卡之前储存数据。缓冲器减少了每一次拍摄所需的时间间隔,为连拍模式制造了可能。第一代的数码相机并没有安装缓冲器,所以当摄影者拍完一张照片后,他必须等待该照片被存到记忆卡以后才能继续拍摄另一张照片,这种等待是令人讨厌的。然而,当今几乎所有数码相机都装有容量较大的缓冲器,缓冲器工作时就像一台摄影机,在不影响你拍摄的情况下,在后台储存照片数据并把数据写进记忆卡内。
缓冲器在数码相机数据处理过程中的位置并没有特别规定,但这个位置却影响了连拍模式的能力(能连拍的照片张数)。缓冲器通常处在数据处理过程中图片处理程序之前或之后。

图片处理程序之后
缓冲器处在该位置时,图像在进入缓冲器之前被处理并转换成最终输出格式。因此,连拍模式常常要求用户选择拍摄低象素、低画质(文件小)的照片,以加快处理速度,提高连拍能力。

图片处理程序之前
在这种方法里面,图片的原始数据(RAW)不经任何处理,直接从CCD传送到缓冲器上,缓冲器在不影响拍摄的情况下把数据交给图像处理器处理。装有这种类型缓冲器的照相机并不能通过降低照片清晰度、画质来提高连拍能力,但是它连拍速度(fps)跟图像处理速度是并不相互影响,直到缓冲器缓存被用尽。

智能缓冲
几乎是最常见的数码单反尼康D70正是使用这种智能缓冲的方法,这种方法结合了上述两种方法的特点。首先,CCD把未经处理的数据直接存储到缓冲器内,就像缓冲器被置于“图片处理程序之前”(1),使照相机具有更高的连拍速度。然后,缓冲器把数据交给图片处理器(2),处理器把数据转换成JPEG, TIFF或RAW格式的图片。但不同的是,已处理的数据被放在缓冲器里面而不是储存卡内(3)。因此,“图片处理-把数据写入记忆卡”这个过程不再成为瓶颈,因为两个过程是平行型而不是直线型的。再者,由于过程(3)比过程(2)所需占用的缓冲器空间少,缓冲器能不断为新照片腾出空间,这种情况在以JPEG格式记录照片时更加明显。最后,就像缓冲器被置于“图片处理程序之后”,输出的图像从缓冲器写入记忆卡(4)。但不同的是,这个过程跟(2)、(3)过程是平行(同时)进行的,因此当其他图像被写入记忆卡时,新照片的处理程序能同时进行。这意味着你完全不必等全部连拍照片被写入记忆卡,缓冲器释放足够内存,就能继续进行连拍。
充电
即使在不使用的情况下,满充电池仍然会逐渐失去电力。因此,如果你并不打算在几周内使用照相机,请在下次使用前把电池重新充电,确保其有足够电力应付拍摄的需要。这里有一点需要特别强调,如果你使用的是镍镉(NiCd)可充电电池,请不要在电池还没完全放电之前对电池进行充电,因为这种做法会降低电池的最大容量。而当上述做法被不断重复时,镍镉(NiCd)可充电电池便产生了“记忆效应”。所以,笔者在这里推荐所有摄影爱好者在电池还未完全放电的情况下,不要对电池充电,即使你使用的是不具有记忆效应的锂电池或镍氢(NiMH)可充电电池。这样做不仅能保持电池容量,而且能减少充电次数,延长电池寿命(可充电电池都一定的充电次数限制,超过该次数,电池不能再充电)。
可充电锂电池

可充电锂电池比AA电池重量更轻,体积更小巧,但是价钱更贵。可充电锂电池没有记忆效应且形式特别。一些使用可充电锂电池的照相机通过适配器,还支持一次性锂电池,如2CR5s或CR2s。这些电池作为可充电锂电池的后备是很不错的选择。
A/D转换器 (A/D Converter)
数码相机的感应器由带有光电二极管的象素组成。当数码相机快门打开,光线进入感应器时,光子被转换成电荷。电荷在形成后立即被放大成一定伏数的电压,使A/D转换器能够识别并处理这些电荷信号。A/D转换器按电压的不同,把这些电荷信号进行分类(即按不连续的明亮程度分类),并用二进制0和1的不同组合表示这些类别。若位数为1bit,A/D转换器便将明亮程度分成0-黑,和1-白。若位数为2bit,A/D转换器表示的明亮程度分4种(2的2次方),即00-黑、11-白,和介于纯黑纯白之间的01与10。现今,多数消费级数码相机使用位数为8bit的A/D转换器,同样道理,其每个象素最多能分别表示256(2的8次方)种不同的明亮程度。

然而,A/D转换器的最低位数比率(解析度)是由感应器的动态范围(精确度)决定的。例如,感应器的动态范围为1000:1(60dB),A/D转换器为免信息缺失,其位数至少为10bit(2的10次方等于1024个不连续的明亮程度)。10bit的A/D转换器理论上最适合数码相机,因为12或14bit的A/D转换器除了噪音(noise)外不会产生额外的信息。然而,科学家在实践中证明:把A/D转换器过分细致的制作成12bit能为A/D转换器提供一定误差幅度。额外的位数也能有效减少线性数据的误差。
因此,当我们以后要购买数码相机和扫描仪的时候就要特别小心了。这些产品广告材料上经常会声称产品的A/D转换器位数比率高,因而输出的图像动态范围高。通过以上的说明,我们可以知道这种说法并不一定正确。只有当感应器有足够的动态范围,上述说法才能成立。
数码单反通常使用10或12bit的A/D转换器,动态范围比消费级数码相机更高。这些高端的照相机多数会为用户提供RAW格式的存储选择,因为RAW能更好的为10或12bit的A/D转换器服务,它能存储每个象素上10或12bit的数据。然而,JPEG格式只能存储8bit的数据。
感应器动态范围
A/D转换器类型
图像色调范围
低(例:大约256:1)
8bit
8bit
10或12bit
8+bit
高(例:大约4,000:1)
8bit
8bit
10或12bit
10或12bit(RAW)
[技巧] 既简单又实用 四招让你拍出好的照片
1.新机重新设定
他提醒刚购买数码相机的用户,别让数码相机保持出厂时所调校的自动设定。这些自动设定包括:白色平衡、ISO感光速度和对比度。把这些设定调整至初始化设定,有助于提高照片的可观性。
⒉善用白色平衡
他也建议摄影用户多尝试使用不同的白色平衡模式进行拍摄。尤其是拍摄一些有人在内的画面,可朔造出不同的感觉。例如,采用日光或烛光模式,把画面中的人物透过照片带出生活的气息,让照片看起来有一种活生生的感觉。
⒊了解相机色域
数码相机是透过数码晶片处理照片,并分析照片中的颜色。掌控这些颜色分配的重要部分———色域,让数码相机能够识别各种不同颜色。他也指出,在色域中,分别有红色、蓝色和两种青色,而不是传统的红、蓝、青个别一种颜色。 一般数码相机都采用sRGB色域,趋向与真实世界接近的自然色域。如今,也出现了另一种色域更广的Adobe RGB色域,能让照片看起来更鲜艳。用户必须了解这一点,免得拍摄出来的照片与冲洗出来的效果有任何的差异。
4.充份保养相机
使用电池驱动的相机,在长时间没启动的情况下,最好把电池拿出来,免得相机机身受到影响。此外,每次把记忆卡中的照片下载至电脑内储存或进行修改后,把照片储存或刻录光碟内,切勿使用记忆卡进行长期储存,免得遗失。同时,每次下载照片后,使用相机进行记忆卡格式化,才能确保善用每一个记忆卡内的空间。不用时寄放在干净与干燥的地方,才能延长电子仪器的使用寿命。
[技巧] 技巧不嫌多 数码摄影技巧小杂烩
1.夜景曝光技巧
夜景照片是广大摄影爱好者都比较喜欢的拍摄主题,但我们却发现按照测光表的读数拍摄常常会建筑曝光过度。这是怎么回事呢?这该死的测光表又\"涮\"了我们一把!
当我们把测光表对准夜空中的城市时,它想干什么?一定又是想把漆黑天空和街上的霓虹灯光搞平均主义。我可不想要18%灰度的照片。取平均时,测光表过度补尝了夜幕,得到照片里的建筑物当然会曝光过度。我们希望灯光就是灯光,夜色就是夜色。所以我们需要避免天空干扰测光。
2.室内摄影的曝光
在室内拍摄的一个缺点就是光线不够理想,在大部分情况下室内光线都会太暗。这时,闪光灯显然是一种非常有效的人造光源,功能强大而且使用多样化,但你也可以在拍摄时使用已有的现场有效光。
内置闪光灯的光往往太弱、太冷,拍摄的影像会破坏整个环境的氛围。在3米以外拍摄时,你就必须使用曝光指数至少为36~40的外接闪光灯――你可以向了解闪光灯的朋友或摄影器材经销商咨询配合你的相机使用的闪光灯装置以及它们的性能。需要柔和的照明时,你也可以将闪光灯放在相机的机顶或旁侧,同时使用反光板和散射器以获得柔各照明,这是因为这样可增强有效的照明区域,用侧光来照亮三维的物体。
在拍摄大房间时,你可以使用多个闪光灯或者打大光圈,在房间的不同位置释放快门――这种方法会非常困难,尤其是你没有摄影助手时。
你也可以用持续的人造光来代替闪光灯,卤光和钨光都是不错的选择,如果相机的自动白平衡设置不能使你得到满意的结果,你不妨尝试使用几种不同的白平衡设置,如果没法使用额外人造光源,那么你只能使用所谓的\"有效自然光\"了,它们有可能是透过窗户照射进来的光线,也可能是不会影响正常摄影的人造光。使用有效自然光的优点是房间照明很自然。
除非你买的相机非常便宜,否则你最好选择曝光时间(由快门速度决定)在1/500~1或2秒之间的相机,同时还能选择尽可能多的不同光圈值,这些相机本身具备的条件是使你在昏暗的室内进行拍摄成为可能,而且能拍摄出效果非常好的照片。
不过值得注意的是,室内拍摄时,最好是关闭闪光灯,同时将相机放在三脚架上,否则照片会变模糊。实在没有三脚架,你也应尽可能找到稳定的支撑点,这些方法虽然没有三脚架的效果好,但也能适当减弱因相机晃动造成的照片模糊。在释放快门时,将相机靠在硬物体上――凳子,柱子或墙壁,只有是稳固的东西就行,然后非常轻地揿下快门,释放按钮。有可能的话,还可用自拍器来释放快门。
在光线不足或不稳定的环境下拍摄时(如禁止使用闪光灯的场所),唯一的选择就是增加感光度,高档相机都有\"强制增感\"功能,你可以从一系列的ISO值中进行选择双倍或四倍感光度。不过这种方法会大大影响到图片质量。当然哪,这是避免因晃动导致的影像模糊的唯一方法,特别是在随意拍摄照片或拍摄活动的被摄主体时,尤为有用。
3.家庭肖像摄影小技巧
在家庭摄影中,绝大多数都是属于“纪念照”一类,而“纪念照”的主体绝大多数又是人,因此,肖像摄影往往占据着家庭相册的主要篇幅。但很遗憾的是,其中的大部分照片象是警察局里的档案一般,每个人都靠着墙,构图死板,表情生硬。如果你能适当地学习一些肖像摄影的话,相信一定能使你的家庭相册“艺术”起来。下面是几个基本的操作技巧。
保持眼睛水平线的拍摄位置改善肖像摄影的最简易方法是从被摄者的眼睛水平线开始。比如,给小孩子拍照时,你就要弯下膝盖甚至腹部,使相机与小孩的眼睛大体上处于同一水平上。无论朝上还是朝下拍摄都会使被摄者失真变形,而且相机靠得越近,失真就越厉害。以眼睛水平线拍摄被摄者时,拍摄的照片会显得更加“亲切”,这是因为观众会感觉到他们观察的被摄者的“眼睛”,而眼睛往往是一个人最生动的地方。
先背景,后人物
如果不当心的话,背景可以影响整张照片的效果。明亮的色彩、闪亮的物体或被摄者身后的一大群人都会影响整张照片的视觉感受。因此,在拍照前,你应该先将注意力集中在背景的处理上,先选择背景,再考虑人的神态和位置。选择背景可以从以下三个方面入手:
靠近被摄者:靠近被摄者,并让被摄者而非其它东西占满整个取景器。当使用能进行变焦或可使用可互换镜头的相机时,你可以使用切换到长焦端,以放大取景器中被摄者的大小。
改变角度:向左、右、上、下变换拍摄角度都可产生不同的背景,因而在通过取景器进行取景时,应尽量多变换角度,以选择最好的拍摄位置。
大光圈:一些专业摄影师都愿意投资大量资金,购买可调节光圈的单反相机,这样,就可以选择大光圈使背景位于焦点之外,以使模糊、显得缓和而不会太引人注目,从而强调被摄者。
注意防止“红眼”
使用带内置闪光灯的相机尤其是傻瓜相机时,往往会产生红眼这一令人不悦的现象。它是在被摄者的瞳孔放大、而内置闪光灯照亮眼睛的血管时产生的。解决这一问题的一种方法是提高室内照明情况,以缩小瞳孔或使用相机的红眼减轻闪光模式――在这种模式下,相机在正式曝光前会预闪一次,从而使瞳孔缩小,减轻红眼程度。
用强制闪光完善光影平衡一些具有内置闪光灯的相机和单反相机的闪光配件都具有“强制闪光”模式,“强制闪光”是指即使在光线充足的情况下,相机也能进行闪光。强制闪光用于照亮阴影,并将光滑表面反射的光线“添加”到被摄者的眼睛上(这能使被摄者的眼神更加吸引人),它对于去除在正午高照的太阳在眼睛或鼻子下留下的阴影非常有用。
自拍也是很有用的
现在的大部分相机都有内置自拍器,该功能可让快门释放延迟10秒,这段时间可让摄影师离开相机进行其它活动,一般来说,你要用三脚架来固定相机以获得最佳效果。没有三脚架的话,你可以将相机放在稳固的物体上。自拍还可减少相机的轻微振动,从而提高成像的精细度。
好构图带来好效果
好的构图是影响肖像摄影是否成功的一个重要因素。人的身体是垂直的,因为当你想拍摄被摄者的全身时,最佳构图应该是竖构图。其中最基本也是最有效的规则是“三三构图法”。在摄影构图方面,《数码学院》已有专门介绍,你可参阅《摄影的构图规则》一文。
人像摄影并不仅仅是拍摄人像
既然家庭相册是纪念照片集,那么你的家庭人像拍摄也不应只局限于外出时拍摄,你可以在生活中随时拍摄一些富有生活情趣的日常生活照,这些除了摄影的内涵外,更重要的是照片背后的有趣故事,比如你的爷爷在厨房中头发被灼了一块时,你可以拍下一家人的态度。
要使你的家庭相册成为含金量很高的珍藏品,那么拿起你的相机,随时准备拍摄!
[技巧] 数码相机该怎样玩 玩转数码相机的绝招
随着数码产品的日渐普及,数码相机已经步入了我们的生活。但档次相同的数码相机,由于操作方式的不同,往往拍摄出的效果也会相距甚远。那么如何能够迅速地掌握数码相机的使用技巧,简单、轻松地拍出令人满意的作品呢?看看下面的九个绝招,或许会给你帮助。
1.玩按快门
很多人认为:使用数码相机,特别是使用傻瓜化的数码相机与使用光学相机是完全一样的。其实这种看法存在一个误区。由于数码相机采用的是电子感光器件CCD或CMOS感光成像的原理;因此,当快门按下后,存在一个比较短的延迟时间。在这段约半秒钟的时间里,如果你的手稍有抖动,便会使图像变虚,从而影响拍摄质量。这种情况在近距拍摄或微距拍摄时更为明显。因此,当按下快门时,需要用手将相机机身端稳,并保持几秒钟的静止;如果拍摄近距或微距的作品时,最好使用三脚架拍摄。
2.玩变焦
目前主流的数码照相机,多带有2~5倍光学变焦的镜头。同时,这些相机的镜头也多带有2~10倍的数码变焦功能。因此,正确使用变焦镜头就是一个很实际的问题。当使用光学进行变焦拍摄时,特别要注意边缘的失真程度。同是数码相机,但因镜头品质的不同,在拍摄画面的边缘和边角处,均存在不同程度的桶形或枕形失真,因此当镜头拉的过近或过远时,一定要尽可能地把拍摄主体往画面的中心移,以避免其变形。当然,此时也可以利用变形来营造出特殊的画面效果。
3.玩数码变焦
虽然使用数码变焦会降低图像的质量,但在某些情况下,如果当被拍摄物体距离你很远时,你可以使用高分辨率的存储模式,配合数码变焦来拍摄。此时,虽然拍摄到的画面看着不很清晰,但拍摄后,将图片用Photoshop等绘图软件来调整一下画面的大小格式,将画面缩小后,便会得到相对满意的画面。
4.玩光学取景器
在拍摄逆光作品的时候,最容易将物体拍黑,此时一定要选择逆光补偿模式,同时要利用少量自然反光等方式为物体正面补一点光。某些中高档的数码相机,应该加装遮光罩。如果数码相机带有光学取景器,建议关掉液晶的取景器而改使用光学取景器。这样可以有效地保护CCD或CMOS及液晶屏等电子器件。
5.玩预置模式
与光学相机不同,很多数码照相机都有丰富的预置模式。这些模式其实是一些根据数码相机自身特点而编写的图像补偿算法。当拍摄时如果使用这些模式,就可以拍出比采用普通模式更为靓丽的画面。因此,建议你依照拍摄环境来调用这些预置模式。
[技巧] 亡羊补牢为时不晚 初学摄影中常见的失误
曝光过度
凡是曝光过度的相片,其影像表现苍白而缺乏反差。产生这类问题的原因比较复杂,其中包括测光表不准,光圈收缩失灵,快门失灵都可以出现这样的问题。 出现了这样的问题时,要首先检查相机上感光度的设定值,检查测光系统、光圈和快门是否存在故障。
镜头眩光
在作逆光摄影时,影像出现了苍白的雾化效果。严重影响到影像层次的表现。镜头眩光的原因在于是劣质镜头或滤色镜或镜头未加膜,使光线在前镜片表面形成散射,镜头眩光需要与相机漏光的现象相区别,相机漏光出现的散射光,使胶片出现灰雾,但不影响胶片结影,而镜头眩光类似于雾化镜的夸张效果。 如果相机出现了这样的问题,需要在这样的镜头前面加用遮光罩,或取掉现有的滤光镜,以减轻它的影响。有这样问题的相片可以在后期制作的时候提高其反差,以减轻它的影响。
在飞机上隔窗使用偏光镜
在飞机上隔窗使用偏光镜拍照,会在影像上出现彩虹样的色彩变化。如需要在飞机上拍照,最好的处理方法是取下偏光镜,在小型的飞机上还可以打开窗户拍照。
水雾弦光
影像中出现杂色的雾状斑块,它的形状或不易识别的或大约为圆形。特别是在逆光摄影的时候最容易出现。这样的眩光是由水滴或其它的液体溅在镜头上所引起。最容易出现水雾眩光的环境是在下雨天摄影或在海边摄影,并伴随有大风的时候,问题更为严重。所以,当我们在这样的环境中摄影的时侯,要随时检查前镜片,避免溅水,并保持它的清洁。 已经溅水的镜头需要将它擦干净。对影像的影响要根据溅水的程度不同,或者严重,或者较轻。影响较轻者,可以在照片上适当修整。
浅色主体曝光不足
相机的内测光表是按18%灰板的平均值校准的。如果主体过于明亮 (比如白雪、沙滩),它就会对自然光的亮度作出补偿,其结果就会使这类主体影像变为灰色。 对于这样问题的处理方法是,凡是明亮的主体,都需要显示出比平均亮度主体更高的亮度,所以,在拍摄这样的主体时,需要按直接测光的数据,再增加 l-2挡的曝光量,或者用一支手持的测光表,测取人射光的读数,或者从附近的平均亮度主体测取读数,或者使用一块18%灰板或其代用品测光。
遮光罩使用失误
拍摄的影像表现为四角发黑,边缘柔和。产生问题的原因在于,在用较短焦距的镜头拍照时,使用了长焦距镜头的遮光罩,也可能是在使用多片滤色镜时,滤色片的厚度影晌了镜头的视场。处理的方法是取下遮光罩和滤色镜。对于已经拍出的胶片,可以在放大或复制的时候进行适当的剪裁。
渐变滤色片位置错误
这是摄影者在使用渐变滤色片暗化天空之后,在拍摄另一照片的时候,忘记旋转渐变滤色片或将其取下,使其后拍摄的胶片影像一边亮、一边暗,使获得的色彩严重失调。这是渐变滤色片的阻光效果。因此,我们在每次拍照之后需要对滤色片进行检查,及时改正。对于已经拍出的底片,可以在放大或复制的时候,反向使用同一渐变滤色片,进行遮挡,往往可以将其纠正。
主体移动
表现为画面中静态物体影像清晰,仅主体部分出现动态模糊。这是由于胶片在曝光期间被摄主体移动所造成的。最容易发生在相机用低速快门拍摄快速动体的时候。为了避免被摄体的移动,可以等候其放慢速度的时候按下快门。或者就是提高快门的速度。 此外,也有人成功地故意使用低速快门,在取景框中追随快速移动物体的摄影,使主体清晰昔景模糊,从而获得动态的摄影效果。但这样做需要更高的摄影技巧。
相机振动
表现为影像全部模糊,放大后可以明显地看到,其线条出现轻度双影或多影错位。原因在于曝光期间,相机受到振动所致。这一现象最容易发生在使用低速快门,并将相机安装在轻型三脚架上拍照的时候。在影像边缘的双影错位这一特征上,我们可以明显地分清与其它焦点问题的区别。 在手持相机拍照的时候,为了避免曝光时相机晃动的最根本办法是使用较高的快门速度。一般认为,能够在手持相机摄影时避免晃动的最低快门速度是镜头焦距的倒数。这就是说,使用 50mm标准镜头的时候,应当将快门设置于 l/60秒,使用100mm中焦镜头的时候,快门应在 l/125秒,依次类推。 在必须使用低快门速度的场合,需要将相机安装在稳定的三脚架上,用快门线或自拍功能释放快门,并将反光镜锁住,以减少振动的可能性。在刮风的环境中还需要有档风设施。
闪光快门不同步
已拍摄的画面表现为,一边有影像,另一边为没有影像的黑片。出现这样问题的原因是:在用单镜头反光相机作闪光摄影的时候,快门的速度定的太高了。出现这样的问题,要检查相机上的闪光同步快门速度,并将其修正。目前不同厂家生产的单反相机常常具有不同的最高闪光同步快门速度.常见的有l/60秒、 1/90秒、和 l/125秒.在高级的单反相机上还可以看到最高的闪光同步速度为 l/250秒,闪光摄影只能使用这一快门速度或比它更慢的快门速度,而不能使用更快的快门速度、否则就会出现上述问题。只有在镜间快门的相机上,才能实现所有的快门速度完全同步。
1.LCD的保养
在LCD上,最常见的就是会有手指指纹或是一些油垢灰尘之类的覆盖,看来不甚光彩的面貌,一般可用细致的眼镜布或「3M」公司出产的魔布,都可以拿来擦拭,切记要轻轻擦拭,注意不要使用强烈的玻璃清洁剂,因为部份数码相机的LCD表面有一层抗强光膜,这层膜一旦被破坏之后,无法修护,也不在保固范围之内。另外,也可以购买使用屏幕保护贴,只要拿回去剪裁成适当大小,贴在LCD屏幕上,就可以防止LCD屏幕被刮伤刮坏的机率喔!
2.镜头的保养
相机使用后,镜头多多少少也会沾上灰尘,而镜头上的灰尘,又会造成相片的显影品质,所以镜头的保养是非常重要的。一般就先用吹球将镜面上的灰尘除去,如果跳过这个步骤直接先将在镜面上擦拭的话,等同于用沙子在镜片上磨,直接造成镜面毁损。然后使用镜头专用的拭镜布,由中心向外面轻轻擦去污渍;如要使用镜头专用清洁液,请先沾于拭镜布上再擦拭于镜头上,可不能直接就滴落在镜头上唷!
3.防潮防霉
对于一般使用者在购买数码相机时,可能同时也必须选购简易型的密封防潮箱以及干燥剂。小型的防潮箱大约250元,中型的450元,空间已经非常足够消费型数码相机、储存卡、日后烧成的光盘片等存放。想要一劳永逸的消费者,不如就购买电子防潮箱来存放,还可以严密控制温度和湿度。
4.储存媒介的使用
记忆卡当然也非永久不坏,虽然目前市面上的记忆卡轻薄短小,但也不是金刚不坏之身,经不起大力拔插或折压等动作。此外,一些使用者经常犯的错误是急着将储存卡从相机取出或直接关机,其实很多时候记忆卡正做着储存的动作,这时可能正在储存中的档案毁坏不说,还可能造成记忆卡的永久损坏唷。
5.活动关节的使用
数码相机是一台高科技的电子精密产品,所以不要希望它摔落地面还可以保持最高品质的运作。尤其在目前数码相机诉求可旋转镜头或LCD屏幕等功能,切记拍摄方便的同时,也要小心良好的操作使用,否则一旦毁坏可是会造成整台相机不能运作的唷!
6.充电电池的保养
数码相机跟传统相机不同,对电力的需求非常的大,一般情况都能使用70~120分钟上下限。不论是镍氢或是锂充电电池都有其使用技巧,镍氢充电电池有记忆效应,尽量将电池电力用毕再进行充电,一般可以充电300~500回左右;那如果是一般数码相机专用的锂电池,经过几百次充电后,电池也会有老化的现象,建议购买最初就应多选购一颗电池,否则三五年后就不一定能找到当时相机机型的零组件了。还有就是,当相机可能长达一个月以上时间不使用的话,务必先把电池取出另外保管存放,避免不必要可能会对机器造成的危害,这点对使用非充电电池尤其重要!
伴随数码相机平民化进程的加快,许多普通消费者都已拥有了数码相机并体验到了数码摄影的快乐。在我们使用数码相机摄影时,常会遇到这样或那样的问题而导致拍摄工作不能正常进行,下面就这些问题的原因及处理方法为大家作以介绍:
一、拍摄图像不清晰
1.虽然使用了最高分辨率,光线好,但拍摄出来的照片模糊不清。这种情况通常是由于在按快门释放键时照相机抖动造成的。由于数码相机的感光度低,所以,使用数码相机拍照时,需要握住相机的时间更长。要拍摄最清晰的照片,拍照时必须握稳相机,即便最轻微的抖动都会造成模糊不清的图像。
处理方法:拿稳相机,拍照时最好使用三角架,或者将相机放到桌子、柜台或其安固定的物体上。再有就是一个"练"字,平时多练习持机的基本功。
2.取景器的自动聚焦标志未置于拍照物上。将自动聚焦框定位于拍照物上或使用聚焦锁定机能。
3.镜头脏污。镜头脏污会造成相机取景困难而使拍出的图像模糊。用专用的清洁镜头用纸清洁镜头。
4.模式选择不当。选择标准模式时,拍照物短于距离镜头的最小有效距离(0.6m)。或者在选择近拍模式时,拍照物远于最小有效距离。
当被摄物于0.3--0.6M范围之内时,用近拍模式拍照。在此范围以外时,用标准模式拍照。
5.在自拍模式下,站在照相机的正面按快门释放键。应看着取景器按快门释放键,不要站在照相机前按快门释放键。
6.在不正确的聚焦范围内使用快速聚焦机能。视距离使用正确的快速聚焦键。
二、图像太暗
1. 闪光灯被手指挡住。正确握住照相机,不要让手指挡住闪光灯。
2.在闪光灯充电之前按了快门释放键。等到橙色指示灯停止闪烁。
3. 未使用闪光灯。按闪光辅助杆设定闪光灯。
4.被摄物置于闪光灯的有效范围之外,将被摄物置于闪光灯有效范围之内。
5.拍照物太小而且逆光。将闪光灯设定于辅助闪光模式或使用定点测光模式。
三、图像太亮
1.闪光灯设定于辅助闪光模式。将闪光模式设定为辅助闪光以外的模式。
2.拍照物极亮。调整曝光。
四、室内拍照的图像色彩不自然
原因是灯光装置影响图像。此时将闪光模式设定为辅助闪光模式。
五、图像轮廓模糊
原因是镜头被手指或背带挡掉一部分。应正确拿住照相机,不要让手指或背带挡住镜头。
六、闪光灯不发光
1.未设定闪光灯。按闪光灯弹起杆,设定闪光灯。
2.闪光灯正在充电。等到橙色指示灯停止闪烁
3.拍照物明亮。使用辅助闪光模式。
4.在已设定闪光灯的情况下,指示灯在控制面板上点亮时,闪光灯工作异常。请予以修理。
七、相机不动作
1.电源未打开,按电源键接通电源。
2.电池极性装错。重新正确安装电池。
3.电池耗尽。更新电池。
4.电池暂时失效。使用时,请保暖电池;在拍照间隙,暂时不使用电池。
5.卡盖被打开。关闭卡盖。
八、相机自动关闭
1. 如果数码相机突然自动关闭,你首先应该想到的是电池电力不足了————数码相机是个耗电大户,它因为电池电力不足而关闭的现象经常出现。更换电池。
2. 如果更换了电池以后,数码相机还是无法开启,而你发现相机比较热时,那就是因为你连续使用相机时间过长,造成相机过热而自动关闭了。停止使用,等它冷却后再使用。
九、按快门释放键时不能拍照
1. 刚拍照的照片正在被写入SmartMedia卡,此时放开快门释放键,等到绿色指示灯停止闪烁,并且液晶显示屏显示消失。
2.SmartMedia卡已满。更换SmartMedia卡,抹消不要的照片或将全部相片资料传送至个人电脑后抹掉。
3.正在拍照时或正在写入SmartMedia卡时电池耗尽。更新电池并重新拍照。
4.拍照物不处于照相机的有效工作范围或者自动聚集难以锁定。参照标准模式和近拍模式的有效工作范围或者参照自动聚焦部分。
十、相机无法识别存储卡
1.使用了跟数码相机不相容的存储卡,不同的数码相机使用的存储卡是不尽相同的,在大多数码相机不能使用一种以上的存储卡。解决方法是换上你的数码相机能使有的存储卡。
2.存储卡芯片损坏,,找厂商更换存储卡。
3.存储卡内的影像文件被破坏了。造成这种现象的原因是,在拍摄过程中存储卡被取出,或者由于电力严重不足而造成数码相机突然关闭。如果重新插入存储卡或者重新接上电力,问题还是存在的话,格式化你的存储卡。
十一、刚拍摄的相片不能在液晶显示屏上呈现
1.电源关闭着或记录模式开启着。将记录/播放开关设定于播放位置,并接通电源。
2.SmartMedia卡无相片。查看控制面板。
十二、液晶显示屏模糊不清
1.亮度设定不对。在播放模式下,从菜单选择ERIGHTNESS并进行调节。
2.阳光照射在显示屏上。用手等遮住阳光。
十三、相机连接电脑传送资料至电脑时出现出错信息
1.电脑未插接好,正确插接电缆。
2.电源末打开。按电源键接通电源。
3.电池耗尽。更新电池或使用交流电源转接接器。
4.串行口选择不当。用操作系统软件确认串行口是否选择得当。
5.无串行口可供使用。按个人电脑的使用说明空出一个串行口(仅限于Macintosh开关AppleTalk/LocalTalk机能)。
6.图像传送速度先择不当。在电脑上选择正确的传送速度。
7.未安装TWAIN/Plug-In。将TWAIN/Plug-In安装在电脑上。
当按任何键均不能进行任何操作时,请按卡盖上的重设键,然后再按电源键。
十四、加电后液晶显示不能正常显示当前状态
正常情况下,加电后液晶显示器应能正常显示当前状态,并且随着功能设定的改变和拍摄的进行,显示器能作出相应的反应。如加电后液晶显示器不能正常显示当前状态,多数情况是电池接触不良或电量不足所致。可以重新装好电池或更换新电池。更换新电池时,注意必须全部更换,不能新旧电池混用。
十五、液晶显示器显示图像时有明显瑕疵或出现黑屏
加电后液晶显示器能正常显示当前状态和功能设定,但不能正常显示图像,画面有明显瑕疵或出现黑屏。出现这种情况,多数是CCD图像传感器存在缺陷或损坏所致。此时应更换CCD图像传感器。这种情况多发生在二手数码相机,选购二手数码相机时,一定要仔细鉴别CCD图像传感器。如果相机没有LCD显示屏,CCD成像器件的好坏一般无法直接判断,有时由于CCD损坏但在拍摄时一切正常,直到电脑下载照片时才发现照片一片漆黑,所以,只能通过实拍查看输出照片的质量。
十六、电脑不能正常下载照片
这种情况大多数是电脑连接线有问题。依照相机接口不同,电脑连线方式很多,常用的标准串 口连线就有三种,此外还有USB等其它连线。进行连线操作时务必到位、不松动,如图7-6所示。有条件的话,最好有备用连线,这样连线出现问题可以及时更换。
十七、照片颜色不对
我们经常会发现数码照片里面的景物和原来我们眼睛看到的景物的颜色发生了变化,有的时候偏红,有的时候偏黄。这是怎么回事呢?这主要是由于白平衡没有调节好造成的。白平衡调节功能的作用,和在传统相机彩色摄影时加色温转滤色镜的作用是类似的,目的是达到准确的色彩还原,只是数码相机的色温不需要在镜头上加滤镜,而是采用电路调整方式,靠电子线路改变红、绿、蓝三基色的混合比例,把光线中偏多的颜色成分修正掉。大多数数码相机中,白平衡调节有自测模式,一般用上面一个矩形的小方块,下面两个小三角的符号来表示。这种模式的白平衡调节是让你将相机对准拍摄现场白色的物体,然后半按下快门,此时,相机会自动记录这种光线下白色的状态,依据这个数值,就可以在接下来的拍摄下中正确的对色彩进行还原了。建议大家在相机有这种白平衡调节模式的条件下使用它,这种功能在一般条件下还是比较准确的。但是在一些复杂的条件下拍摄就很难说了。事实上,我们接触到的环境条件一般都是比较复杂的。所以我们在拍摄的时候一定要养成先观察周围的环境,拍照之前就把白平衡调节好的习惯。
十八、拍好的照片上有很多小点
这就是我们所说的照片中的噪音。这种情况多数出现在夜景的拍摄中,是由于感光度太高造成的。感光度的数值越高,画面的质量就会越粗糙,感光度的数值越低,画面就会越细腻。但是,感光度高意味着对光的敏感度高,所以,在弱光拍摄的时候,我们常常要选择高感光度,那么,如果相机本身的降噪系统不好的话,就会造成画布出现噪音的情况。想要避免这样的情况,我们就需要人为地将感光度调的稍低一些,然后用相对较长的曝光时间来补偿光线的进入,这样,拍出来的照片就会有层次,而质量有保证了,当然,前提是,你需要带上三脚架。
十九、照片发暗,出现颗粒状图像
虽然使用最高分辨率,但拍摄出来的照片发暗,出现颗粒状图像,通常这是由于光线不足所致。使用数码相机拍照时,光线对照片的影响最大,大多数数码相机的光敏感度相当于SIO 100胶卷的感光度,因此,光线不足会造成照片发暗和出现颗粒状图像。如果相机有闪光灯,不仅室内拍照需要使用,而且室外拍摄阴影下的物体时也要使用闪光灯。
二十、照片上主体画面小
照片上主体画面小,背景画面大这是业余摄影中常见的现象,物别是摄影新手,往往忽视拍摄主体。使用数码相机拍照,可以进行照片编辑处理,所以原始图像的质量至关重要。应尽量让拍摄物体充满画面,不要将宝贵的像素浪费在次要的或编辑中要修剪掉的背景画面上。
二十一、用专用照相纸打印出来的照片不清楚
数码照片的图像质量直接与每英寸像素数目(dpi),即图像分辨率有关。像素越多,分辨率越高,图像质量越好。为了得到好的打印质量,所需的图像分辨率大约是300ppi。使用数码相机拍照时,如果准备将照片打印出来,一定要使用相机所允许的最大像素数。当然,像素越多也就意味着文件越大,在相机内存中放的照片的数量就会减少。
二十二、打印出来的图像模糊不清、灰暗和过度饱和
照片拍摄正常,但打印出来的图像模糊不清、灰暗和过度饱和。这种情况多数是因为所用的纸张不符合要求。打印图像时所用的纸张类型对图片的质量有重大影响。同一幅图像打印在专用照机纸上显得亮丽动人;打印在复印纸上则清晰、光亮;而打印在便宜的多用途纸上时,则会显得模糊不清、灰暗和过度饱和。
倍受关注的文章:不能不看的美图    谁改变了世界     知识改变命运    心灵的呼唤     屁无色却有“味”    健康来源于食物的平衡配搭     慧眼看世界   时尚杂志随你看